Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Sci Rep. 2024 Aug 5;14(1):18150. doi: 10.1038/s41598-024-69009-y.
With breast cancer emerging as a pressing global health challenge, characterized by escalating incidence rates and geographical disparities, there is a critical need for innovative therapeutic strategies. This comprehensive research navigates the landscape of nanomedicine, specifically focusing on the potential of magnetic nanoparticles (MNPs), with magnetite (FeO) taking center stage. MNPs, encapsulated in biocompatible polymers like silica known as magnetic silica nanoparticles (MSN), are augmented with phosphotungstate (PTA) for enhanced chemodynamic therapy (CDT). PTA is recognized for its dual role as a natural chelator and electron shuttle, expediting electron transfer from ferric (Fe) to ferrous (Fe) ions within nanoparticles. Additionally, protein-based charge-reversal nanocarriers like silk sericin and gluten are introduced to encapsulate (MSN-PTA) nanoparticles, offering a dynamic facet to drug delivery systems for potential revolutionization of breast cancer therapy. This study successfully formulates and characterizes protein-coated nanocapsules, specifically MSN-PTA-SER, and MSN-PTA-GLU, with optimal physicochemical attributes for drug delivery applications. The careful optimization of sericin and gluten concentrations results in finely tuned nanoparticles, showcasing uniform size, enhanced negative zeta potential, and remarkable stability. Various analyses, from Dynamic Light Scattering (DLS) and scanning electron microscopy (SEM) to transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Thermogravimetric analysis (TGA), provide insights into structural integrity and surface modifications. Vibrating Sample Magnetometer (VSM) analysis underscores superparamagnetic behavior, positioning these nanocapsules as promising candidates for targeted drug delivery. In vitro evaluations demonstrate dose-dependent inhibition of cell viability in MCF-7 and Zr-75-1 breast cancer cells, emphasizing the therapeutic potential of MSN-PTA-SER and MSN-PTA-GLU. The interplay of surface charge and pH-dependent cellular uptake highlights the robust stability and versatility of these nanocarriers in tumor microenvironment, paving the way for advancements in targeted drug delivery and personalized nanomedicine. This comparative analysis explores the suitability of silk sericin and gluten, unraveling a promising avenue for the development of advanced, targeted, and efficient breast cancer treatments.
随着乳腺癌成为一个紧迫的全球健康挑战,其发病率和地理差异不断上升,因此迫切需要创新的治疗策略。本研究全面探讨了纳米医学的领域,特别是关注磁性纳米粒子(MNPs)的潜力,其中磁铁矿(FeO)是研究的重点。MNPs 被包裹在生物相容性聚合物中,如二氧化硅,称为磁性硅纳米粒子(MSN),并与磷钨酸盐(PTA)结合以增强化学动力学治疗(CDT)。PTA 因其作为天然螯合剂和电子穿梭体的双重作用而被认可,可加速铁(Fe)离子向纳米粒子中亚铁(Fe)离子的电子转移。此外,还引入了基于蛋白质的电荷反转纳米载体,如丝胶和谷朊粉,以包裹(MSN-PTA)纳米粒子,为药物输送系统带来了动态方面,有可能彻底改变乳腺癌治疗。本研究成功地制备和表征了蛋白质包覆的纳米胶囊,特别是 MSN-PTA-SER 和 MSN-PTA-GLU,它们具有用于药物输送应用的最佳物理化学特性。通过仔细优化丝胶和谷朊粉的浓度,得到了精细调整的纳米粒子,具有均匀的尺寸、增强的负 ζ 电位和显著的稳定性。从动态光散射(DLS)和扫描电子显微镜(SEM)到透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X 射线衍射分析(XRD)和热重分析(TGA)等各种分析提供了结构完整性和表面修饰的见解。振动样品磁强计(VSM)分析强调了超顺磁性行为,使这些纳米胶囊成为靶向药物输送的有前途的候选物。体外评估表明,MCF-7 和 Zr-75-1 乳腺癌细胞的细胞活力呈剂量依赖性抑制,强调了 MSN-PTA-SER 和 MSN-PTA-GLU 的治疗潜力。表面电荷和 pH 值依赖性细胞摄取的相互作用强调了这些纳米载体在肿瘤微环境中的强大稳定性和多功能性,为靶向药物输送和个性化纳米医学的发展铺平了道路。本比较分析探讨了丝胶和谷朊粉的适用性,为开发先进、靶向和有效的乳腺癌治疗方法开辟了一条有前途的途径。