文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 pH 响应丝胶基纳米载体共递送白藜芦醇和褪黑素抑制不同 pH 值下乳腺癌细胞系的增殖。

Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH.

机构信息

Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.

出版信息

Sci Rep. 2023 Jul 8;13(1):11090. doi: 10.1038/s41598-023-37668-y.


DOI:10.1038/s41598-023-37668-y
PMID:37422485
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10329705/
Abstract

Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127 nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48 h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery.

摘要

基于蛋白质的纳米载体在癌症药物传递方面表现出了良好的应用潜力。丝胶纳米颗粒在该领域中可以说是表现最好的之一。在这项研究中,我们开发了一种表面电荷反转丝胶纳米载体,用于 MCF-7 乳腺癌细胞的共递送达瑟维醇和褪黑素(MR-SNC)作为联合治疗。MR-SNC 是通过闪蒸纳米沉淀法制备的,该方法使用不同的丝胶浓度,操作简单且可重复性高,无需复杂的设备。通过动态光散射(DLS)和扫描电子显微镜(SEM)对纳米颗粒的大小、电荷、形态和形状进行了表征。傅里叶变换红外光谱(FT-IR)和圆二色性(CD)分别用于纳米载体的化学和构象分析。在不同的 pH 值(7.45、6.5 和 6)下进行了体外药物释放实验。使用乳腺癌 MCF-7 细胞研究了细胞摄取和细胞毒性。用最低丝胶浓度(0.1%)制备的 MR-SNC 表现出理想的 127nm 大小,在生理 pH 值下带净负电荷。丝胶结构完全以纳米颗粒的形式保留。在我们应用的三个 pH 值中,在 pH 6、6.5 和 7.4 时,体外药物释放量最大。这种 pH 依赖性表明,通过在轻度酸性 pH 值下改变表面电荷,使我们的智能纳米载体的表面电荷从负变为正,从而显示出智能纳米载体的电荷反转特性,破坏丝胶表面氨基酸之间的静电相互作用。细胞活力研究表明,在所有 pH 值下,MR-SNC 在 MCF-7 细胞中的毒性在 48 小时后均显著,表明两种抗氧化剂联合治疗具有协同作用。在 pH 6 时,发现 MR-SNC 的细胞摄取效率高,DNA 片段化和染色质浓缩。总之,我们的结果表明,MR-SNC 能够在酸性环境中有效地释放包封的药物组合,从而导致细胞凋亡。这项工作介绍了一种用于抗乳腺癌药物传递的智能 pH 响应纳米平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/1f1bee2c73e0/41598_2023_37668_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/063d65d097bc/41598_2023_37668_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/fe13801d6332/41598_2023_37668_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/2b88aecf9945/41598_2023_37668_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/59cc3b3ed462/41598_2023_37668_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/c9d9350b066b/41598_2023_37668_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/51a6a273fe82/41598_2023_37668_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/3d06018bd360/41598_2023_37668_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/93d807b2d05c/41598_2023_37668_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/1829ed88f863/41598_2023_37668_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/1f1bee2c73e0/41598_2023_37668_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/063d65d097bc/41598_2023_37668_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/fe13801d6332/41598_2023_37668_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/2b88aecf9945/41598_2023_37668_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/59cc3b3ed462/41598_2023_37668_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/c9d9350b066b/41598_2023_37668_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/51a6a273fe82/41598_2023_37668_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/3d06018bd360/41598_2023_37668_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/93d807b2d05c/41598_2023_37668_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/1829ed88f863/41598_2023_37668_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4634/10329705/1f1bee2c73e0/41598_2023_37668_Fig10_HTML.jpg

相似文献

[1]
Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH.

Sci Rep. 2023-7-8

[2]
Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and Biological Assessment.

ACS Omega. 2024-3-12

[3]
A comparative study of sericin and gluten for magnetic nanoparticle-mediated drug delivery to breast cancer cell lines.

Sci Rep. 2024-8-5

[4]
Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance.

Drug Deliv. 2018-11

[5]
Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery.

Nanotechnology. 2009-9-2

[6]
Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs.

ACS Appl Mater Interfaces. 2016-3

[7]
Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting.

Int J Pharm. 2019-10-31

[8]
Physical and biological characterization of sericin-loaded copolymer liposomes stabilized by polyvinyl alcohol.

Colloids Surf B Biointerfaces. 2016-12-1

[9]
Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery.

Int J Pharm. 2017-12-8

[10]
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage.

Polymers (Basel). 2021-6-22

引用本文的文献

[1]
Sericin/polyvinyl alcohol hydrogel optimization for enhanced angiogenesis: a promising strategy for treating chronic osteomyelitis.

PLoS One. 2025-7-24

[2]
Sericin-coated MnO@CeO nanocatalysts enable pH-responsive and synergistic vincristine delivery for lung cancer therapy.

Sci Rep. 2025-7-11

[3]
Antibacterial, self-healing, and pH-responsive PVA/ZIF-8@tannic acid nanocomposite hydrogel for sustained delivery of garlic extract.

Sci Rep. 2025-7-1

[4]
Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications.

Pharmaceutics. 2025-5-26

[5]
Sericin coats of silk fibres, a degumming waste or future material?

Mater Today Bio. 2024-10-24

[6]
A comparative study of sericin and gluten for magnetic nanoparticle-mediated drug delivery to breast cancer cell lines.

Sci Rep. 2024-8-5

[7]
Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer.

Sci Rep. 2024-4-12

[8]
Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and Biological Assessment.

ACS Omega. 2024-3-12

[9]
Biomaterials in Drug Delivery: Advancements in Cancer and Diverse Therapies-Review.

Int J Mol Sci. 2024-3-8

[10]
Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy.

Front Pharmacol. 2024-2-2

本文引用的文献

[1]
Antitumor effect of melatonin on breast cancer in experimental models: A systematic review.

Biochim Biophys Acta Rev Cancer. 2023-1

[2]
Five-year survival rate and prognostic factors in women with breast cancer treated at a reference hospital in the Brazilian Amazon.

PLoS One. 2022

[3]
Melatonin: A Potential Antineoplastic Agent in Breast Cancer.

J Environ Pathol Toxicol Oncol. 2022

[4]
Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging.

Nanoscale. 2022-10-13

[5]
Nanocapsules Produced by Nanoprecipitation of Designed Suckerin-Silk Fusion Proteins.

ACS Macro Lett. 2021-5-18

[6]
Estimation of Breast Cancer Overdiagnosis in a U.S. Breast Screening Cohort.

Ann Intern Med. 2022-4

[7]
Recent Advances in Nanomaterials Development for Nanomedicine and Cancer.

ACS Appl Bio Mater. 2021-8-16

[8]
In Vitro Interaction of Doxorubicin-Loaded Silk Sericin Nanocarriers with MCF-7 Breast Cancer Cells Leads to DNA Damage.

Polymers (Basel). 2021-6-22

[9]
Melatonin: A regulator of the interplay between FoxO1, miR96, and miR215 signaling to diminish the growth, survival, and metastasis of murine adenocarcinoma.

Biofactors. 2021-9

[10]
Co-encapsulation of tertinoin and resveratrol by solid lipid nanocarrier (SLN) improves mice in vitro matured oocyte/ morula-compact stage embryo development.

Theriogenology. 2021-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索