Suppr超能文献

胸部计算机断层扫描放射组学预测 COVID-19 患者早期预后。

Chest computed tomography radiomics to predict the outcome for patients with COVID-19 at an early stage.

机构信息

Department of Endoscopy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, China.

出版信息

Diagn Interv Radiol. 2023 Jan 31;29(1):91-102. doi: 10.5152/dir.2022.21576. Epub 2023 Jan 18.

Abstract

PURPOSE

Early monitoring and intervention for patients with novel coronavirus disease-2019 (COVID-19) will benefit both patients and the medical system. Chest computed tomography (CT) radiomics provide more information regarding the prognosis of COVID-19.

METHODS

A total of 833 quantitative features of 157 COVID-19 patients in the hospital were extracted. By filtering unstable features using the least absolute shrinkage and selection operator algorithm, a radiomic signature was built to predict the prognosis of COVID-19 pneumonia. The main outcomes were the area under the curve (AUC) of the prediction models for death, clinical stage, and complications. Internal validation was performed using the bootstrapping validation technique.

RESULTS

The AUC of each model demonstrated good predictive accuracy [death, 0.846; stage, 0.918; complication, 0.919; acute respiratory distress syndrome (ARDS), 0.852]. After finding the optimal cut-off for each outcome, the respective accuracy, sensitivity, and specificity were 0.854, 0.700, and 0.864 for the prediction of the death of COVID-19 patients; 0.814, 0.949, and 0.732 for the prediction of a higher stage of COVID-19; 0.846, 0.920, and 0.832 for the prediction of complications of COVID-19 patients; and 0.814, 0.818, and 0.814 for ARDS of COVID-19 patients. The AUCs after bootstrapping were 0.846 [95% confidence interval (CI): 0.844-0.848] for the death prediction model, 0.919 (95% CI: 0.917-0.922) for the stage prediction model, 0.919 (95% CI: 0.916-0.921) for the complication prediction model, and 0.853 (95% CI: 0.852-0.0.855) for the ARDS prediction model in the internal validation. Based on the decision curve analysis, the radiomics nomogram was clinically significant and useful.

CONCLUSION

The radiomic signature from the chest CT was significantly associated with the prognosis of COVID-19. A radiomic signature model achieved maximum accuracy in the prognosis prediction. Although our results provide vital insights into the prognosis of COVID-19, they need to be verified by large samples in multiple centers.

摘要

目的

对新型冠状病毒病 2019(COVID-19)患者进行早期监测和干预将使患者和医疗系统受益。胸部计算机断层扫描(CT)放射组学可提供有关 COVID-19 预后的更多信息。

方法

从住院的 157 名 COVID-19 患者中提取了 833 个定量特征。通过使用最小绝对收缩和选择算子算法过滤不稳定特征,构建放射组学特征以预测 COVID-19 肺炎的预后。主要结局是死亡,临床分期和并发症预测模型的曲线下面积(AUC)。使用自举验证技术进行内部验证。

结果

每个模型的 AUC 均显示出良好的预测准确性[死亡,0.846;阶段,0.918;并发症,0.919;急性呼吸窘迫综合征(ARDS),0.852]。在为每个结果找到最佳截止值后,COVID-19 患者死亡预测的准确性,敏感性和特异性分别为 0.854、0.700 和 0.864;COVID-19 患者病情加重的预测分别为 0.814、0.949 和 0.732;COVID-19 患者并发症的预测分别为 0.846、0.920 和 0.832;COVID-19 患者 ARDS 的预测分别为 0.814、0.818 和 0.814。自举后的 AUC 分别为死亡预测模型的 0.846(95%CI:0.844-0.848),分期预测模型的 0.919(95%CI:0.917-0.922),并发症预测模型的 0.919(95%CI:0.916-0.921)和 ARDS 预测模型的 0.853(95%CI:0.852-0.0.855)。基于决策曲线分析,放射组学列线图具有临床意义且有用。

结论

胸部 CT 的放射组学特征与 COVID-19 的预后显着相关。放射组学特征模型在预后预测中达到了最大准确性。尽管我们的结果为 COVID-19 的预后提供了重要的见解,但它们仍需要通过多个中心的大样本进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5179/10679604/7ae50f374188/DIR-29-91-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验