Suppr超能文献

基于 18 F-FDOPA PET 的放射组学和 3D-CNN 模型在神经退行性帕金森综合征诊断中的性能和临床影响。

Performance and Clinical Impact of Radiomics and 3D-CNN Models for the Diagnosis of Neurodegenerative Parkinsonian Syndromes on 18 F-FDOPA PET.

机构信息

From the Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France.

Department of Nuclear Medicine, Centre Antoine Lacassagne, UCA, Nice, France.

出版信息

Clin Nucl Med. 2024 Oct 1;49(10):924-930. doi: 10.1097/RLU.0000000000005392. Epub 2024 Aug 5.

Abstract

PURPOSE

The aim of this study was to compare the performance and added clinical value of a semiautomated radiomics model and an automated 3-dimensinal convolutional neural network (3D-CNN) model for diagnosing neurodegenerative parkinsonian syndromes on 18 F-FDOPA PET images.

PATIENTS AND METHODS

This 2-center retrospective study included 687 patients with motor symptoms consistent with parkinsonian syndrome. All patients underwent 18 F-FDOPA brain PET scans, acquired on 3 PET systems from 2 different hospitals, and classified as pathological or nonpathological (by an expert nuclear physician). Artificial intelligence models were trained to replicate this medical expert's classification using 2 pipelines. The radiomics pipeline was semiautomated and involved manually segmenting the bilateral caudate and putamen nuclei; 43 radiomic features were extracted and combined using the support vector machine method. The deep learning pipeline was fully automatic and used a 3D-CNN model. Both models were trained on 417 patients and tested on an internal (n = 100) and an external (n = 170) test set. The final models' performance was evaluated using balanced accuracy and compared with that of a junior medical expert and nonexpert nuclear physician.

RESULTS

On the internal test set, the 3D-CNN model outperformed the radiomic model with a balanced accuracy of 99% (vs 96%). It led to diagnostic performance similar to that of a junior medical expert (only 1 in 100 patients misclassified by both). On the external test set from a less experienced hospital, the 3D-CNN model allowed physicians to correctly reclassify the diagnosis of 10 out 170 patients (6%).

CONCLUSIONS

The developed 3D-CNN model can automatically diagnose neurodegenerative parkinsonian syndromes, also reducing diagnostic errors by 6% in less-experienced hospitals.

摘要

目的

本研究旨在比较半自动化放射组学模型和自动化三维卷积神经网络(3D-CNN)模型在 18 F-FDOPA PET 图像上诊断神经退行性帕金森综合征方面的性能和附加临床价值。

患者和方法

这项 2 中心回顾性研究纳入了 687 名具有帕金森综合征运动症状的患者。所有患者均行 18 F-FDOPA 脑 PET 扫描,采集自 2 家不同医院的 3 台 PET 系统,并由 1 名核医学专家进行病理性或非病理性分类。人工智能模型通过 2 个管道来复制该医学专家的分类。放射组学管道为半自动,涉及手动分割双侧尾状核和壳核;提取并结合 43 个放射组学特征,采用支持向量机方法。深度学习管道为全自动,使用 3D-CNN 模型。两个模型均在 417 名患者上进行训练,并在内部(n=100)和外部(n=170)测试集上进行测试。最终模型的性能采用平衡准确率进行评估,并与初级医学专家和非专家核医学医生的表现进行比较。

结果

在内部测试集上,3D-CNN 模型的平衡准确率为 99%(96%),优于放射组学模型,从而实现了与初级医学专家相似的诊断性能(仅对 100 名患者中的 1 名误诊)。在来自经验较少医院的外部测试集上,3D-CNN 模型使医生能够正确重新分类 170 名患者中的 10 名(6%)患者的诊断。

结论

所开发的 3D-CNN 模型可以自动诊断神经退行性帕金森综合征,在经验较少的医院还可以减少 6%的诊断错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验