Suppr超能文献

用于从高分辨率透射电子显微镜数据中进行分割和缺陷识别的机器学习管道。

Machine Learning Pipeline for Segmentation and Defect Identification from High-Resolution Transmission Electron Microscopy Data.

作者信息

Groschner Catherine K, Choi Christina, Scott Mary C

机构信息

Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA94720, USA.

Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA.

出版信息

Microsc Microanal. 2021 May 6:1-8. doi: 10.1017/S1431927621000386.

Abstract

In the field of transmission electron microscopy, data interpretation often lags behind acquisition methods, as image processing methods often have to be manually tailored to individual datasets. Machine learning offers a promising approach for fast, accurate analysis of electron microscopy data. Here, we demonstrate a flexible two-step pipeline for the analysis of high-resolution transmission electron microscopy data, which uses a U-Net for segmentation followed by a random forest for the detection of stacking faults. Our trained U-Net is able to segment nanoparticle regions from the amorphous background with a Dice coefficient of 0.8 and significantly outperforms traditional image segmentation methods. Using these segmented regions, we are then able to classify whether nanoparticles contain a visible stacking fault with 86% accuracy. We provide this adaptable pipeline as an open-source tool for the community. The combined output of the segmentation network and classifier offer a way to determine statistical distributions of features of interest, such as size, shape, and defect presence, enabling the detection of correlations between these features.

摘要

在透射电子显微镜领域,数据解读往往滞后于采集方法,因为图像处理方法通常必须针对单个数据集进行手动调整。机器学习为快速、准确地分析电子显微镜数据提供了一种很有前景的方法。在此,我们展示了一种灵活的两步流程,用于分析高分辨率透射电子显微镜数据,该流程使用U-Net进行分割,然后使用随机森林检测堆垛层错。我们训练的U-Net能够以0.8的Dice系数从非晶背景中分割出纳米颗粒区域,并且显著优于传统的图像分割方法。利用这些分割区域,我们随后能够以86%的准确率对纳米颗粒是否包含可见的堆垛层错进行分类。我们将这个适应性强的流程作为开源工具提供给社区。分割网络和分类器的联合输出提供了一种确定感兴趣特征(如尺寸、形状和缺陷存在情况)统计分布的方法,从而能够检测这些特征之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验