Eliasson Henrik, Erni Rolf
Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland.
Nano Lett. 2025 Feb 12;25(6):2474-2479. doi: 10.1021/acs.nanolett.4c06025. Epub 2025 Jan 29.
The computational cost of simulating scanning transmission electron microscopy (STEM) images limits the curation of large enough data sets to train accurate and robust machine learning networks for deep feature extraction from atomically resolved STEM images. For nanoparticle size estimation in particular, a diverse data set is essential due to the large variations in size, shape, crystallinity, orientation, and dynamical diffraction effects in experimental data. To address this, we train a 3D convolutional neural network to predict STEM images from voxelized atomic models, achieving a 100x speed-up compared to traditional multislice simulations while maintaining high image quality. We then generate a data set of 100.000 synthetic multislice images and investigate the performance of different size-estimator architectures as a function of training set size. A ResNet18-based model trained on 4000 real and 100.000 synthetic images is found to perform the best, reducing the median size-estimation error from 9.89% without synthetic data to 5.26%.
模拟扫描透射电子显微镜(STEM)图像的计算成本限制了足够大的数据集的整理,从而无法训练出准确且强大的机器学习网络,用于从原子分辨率的STEM图像中进行深度特征提取。特别是对于纳米颗粒尺寸估计,由于实验数据中尺寸、形状、结晶度、取向和动态衍射效应存在很大差异,因此多样化的数据集至关重要。为了解决这个问题,我们训练了一个三维卷积神经网络,以从体素化原子模型预测STEM图像,与传统的多切片模拟相比,速度提高了100倍,同时保持了高图像质量。然后,我们生成了一个包含100,000个合成多切片图像的数据集,并研究了不同尺寸估计器架构的性能与训练集大小的关系。结果发现,在4000个真实图像和100,000个合成图像上训练的基于ResNet18的模型表现最佳,将中位数尺寸估计误差从没有合成数据时的9.89%降低到了5.26%。