Suppr超能文献

微生物群落组成可预测海洋生态系统中的细菌生产力。

Microbial community composition predicts bacterial production across ocean ecosystems.

机构信息

Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, United States.

Scripps Polar Center, UC San Diego, La Jolla, CA 92037, United States.

出版信息

ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae158.

Abstract

Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.

摘要

微生物生态功能是群落组成的一个涌现特性。对于某些生态功能而言,这种联系非常紧密,以至于群落组成可以用来估计生态功能的数量。在这里,我们应用随机森林回归模型来比较群落组成和环境数据对细菌生产力(BP)的预测性能。使用来自两个独立的长期生态研究站点——南极洲的帕尔默长期生态研究站(Palmer LTER)和加利福尼亚州的 SPOT 站的数据,我们发现群落组成是 BP 的一个强有力的预测因子。表现最佳的模型在独立验证数据上的 R2 为 0.84,RMSE 为 20.2 pmol L-1 hr-1,优于仅基于环境数据的模型(R2 = 0.32,RMSE = 51.4 pmol L-1 hr-1)。然后,我们对表现最佳的模型进行了操作化,对 2015 年至 2020 年期间仅具有群落组成数据的 346 个南极样本进行了 BP 估计。我们的预测结果显示了 BP 在南极地区的空间趋势具有显著意义(P 值= 1 × 10-4),并强调了跨海洋盆地的 BP 的重要分类群。我们的研究结果表明微生物群落组成与微生物生态系统功能之间存在很强的联系,并开始利用长期数据集来构建基于微生物群落组成的 BP 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc2/11385589/6306429a996f/wrae158f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验