Suppr超能文献

联邦学习与研究原型:在基于多中心 MRI 的前列腺癌多样化组织病理学检测中的应用。

Federated Learning with Research Prototypes: Application to Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, 94158, USA.

Departments of Radiology and Electrical Engineering, University of California, Los Angeles, 90024, USA.

出版信息

Acad Radiol. 2023 Apr;30(4):644-657. doi: 10.1016/j.acra.2023.02.012. Epub 2023 Mar 12.

Abstract

RATIONALE AND OBJECTIVES

Early prostate cancer detection and staging from MRI is extremely challenging for both radiologists and deep learning algorithms, but the potential to learn from large and diverse datasets remains a promising avenue to increase their performance within and across institutions. To enable this for prototype-stage algorithms, where the majority of existing research remains, we introduce a flexible federated learning framework for cross-site training, validation, and evaluation of custom deep learning prostate cancer detection algorithms.

MATERIALS AND METHODS

We introduce an abstraction of prostate cancer groundtruth that represents diverse annotation and histopathology data. We maximize use of this groundtruth if and when they are available using UCNet, a custom 3D UNet that enables simultaneous supervision of pixel-wise, region-wise, and gland-wise classification. We leverage these modules to perform cross-site federated training using 1400+ heterogeneous multi-parameteric prostate MRI exams from two University hospitals.

RESULTS

We observe a positive result, with significant improvements in cross-site generalization performance with negligible intra-site performance degradation for both lesion segmentation and per-lesion binary classification of clinically-significant prostate cancer. Cross-site lesion segmentation performance intersection-over-union (IoU) improved by 100%, while cross-site lesion classification performance overall accuracy improved by 9.5-14.8%, depending on the optimal checkpoint selected by each site.

CONCLUSION

Federated learning can improve the generalization performance of prostate cancer detection models across institutions while protecting patient health information and institution-specific code and data. However, even more data and participating institutions are likely required to improve the absolute performance of prostate cancer classification models. To enable adoption of federated learning with limited re-engineering of federated components, we open-source our FLtools system at https://federated.ucsf.edu, including examples that can be easily adapted to other medical imaging deep learning projects.

摘要

背景和目的

对于放射科医生和深度学习算法来说,早期前列腺癌的 MRI 检测和分期极具挑战性,但从大型且多样化的数据集学习的潜力仍然是提高其在机构内和机构间性能的一个有前途的途径。为了使处于原型阶段的算法(现有研究主要集中于此)能够实现这一点,我们引入了一个灵活的联邦学习框架,用于跨站点培训、验证和评估定制的深度学习前列腺癌检测算法。

材料和方法

我们引入了一种前列腺癌groundtruth 的抽象表示,它代表了不同的注释和组织病理学数据。如果有可用的 UCNet(一种自定义的 3D U-Net,可同时对像素级、区域级和腺体级分类进行监督),我们将最大限度地利用这些 groundtruth。我们利用这些模块,使用来自两家大学医院的 1400 多个异构的多参数前列腺 MRI 检查进行跨站点联合训练。

结果

我们观察到了一个积极的结果,在不影响站点内性能的情况下,显著提高了跨站点的泛化性能,无论是在病变分割还是对临床显著前列腺癌的病变分类方面。跨站点病变分割性能的交集-重叠率(IoU)提高了 100%,而跨站点病变分类性能的整体准确性提高了 9.5-14.8%,具体取决于每个站点选择的最佳检查点。

结论

联邦学习可以提高前列腺癌检测模型在机构间的泛化性能,同时保护患者的健康信息和机构特定的代码和数据。然而,可能需要更多的数据和参与的机构来提高前列腺癌分类模型的绝对性能。为了在有限的联邦组件再工程的情况下采用联邦学习,我们在 https://federated.ucsf.edu 上开源了我们的 FLtools 系统,包括可以轻松适应其他医学成像深度学习项目的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4add/10869141/6e76bb3285c4/nihms-1962360-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验