Suppr超能文献

个性化动态治疗方案(DTRs)和序贯多重分配随机试验(SMARTs)在心理健康研究中的应用。

Use of personalized Dynamic Treatment Regimes (DTRs) and Sequential Multiple Assignment Randomized Trials (SMARTs) in mental health studies.

作者信息

Liu Ying, Zeng Donglin, Wang Yuanjia

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States.

Department of Biostatistics, University of North Carolina at Chapel Hill, United States.

出版信息

Shanghai Arch Psychiatry. 2014 Dec;26(6):376-83. doi: 10.11919/j.issn.1002-0829.214172.

Abstract

Dynamic treatment regimens (DTRs) are sequential decision rules tailored at each point where a clinical decision is made based on each patient's time-varying characteristics and intermediate outcomes observed at earlier points in time. The complexity, patient heterogeneity, and chronicity of mental disorders call for learning optimal DTRs to dynamically adapt treatment to an individual's response over time. The Sequential Multiple Assignment Randomized Trial (SMARTs) design allows for estimating causal effects of DTRs. Modern statistical tools have been developed to optimize DTRs based on personalized variables and intermediate outcomes using rich data collected from SMARTs; these statistical methods can also be used to recommend tailoring variables for designing future SMART studies. This paper introduces DTRs and SMARTs using two examples in mental health studies, discusses two machine learning methods for estimating optimal DTR from SMARTs data, and demonstrates the performance of the statistical methods using simulated data.

摘要

动态治疗方案(DTRs)是一种序贯决策规则,在每个临床决策点根据每个患者随时间变化的特征以及在早期观察到的中间结果进行定制。精神障碍的复杂性、患者异质性和慢性病程要求学习最优的动态治疗方案,以便随着时间的推移根据个体反应动态调整治疗。序贯多重分配随机试验(SMARTs)设计允许估计动态治疗方案的因果效应。现代统计工具已经开发出来,用于基于从序贯多重分配随机试验收集的丰富数据,根据个性化变量和中间结果优化动态治疗方案;这些统计方法还可用于推荐为设计未来的序贯多重分配随机试验研究而定制的变量。本文通过心理健康研究中的两个例子介绍了动态治疗方案和序贯多重分配随机试验,讨论了两种从序贯多重分配随机试验数据估计最优动态治疗方案的机器学习方法,并使用模拟数据展示了这些统计方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a13/4311115/b39f413aabcc/sap-26-06-376-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验