Rettenmaier Clara, Herzog Antonia, Casari Daniele, Rüscher Martina, Jeon Hyo Sang, Kordus David, Luna Mauricio Lopez, Kühl Stefanie, Hejral Uta, Davis Earl M, Chee See Wee, Timoshenko Janis, Alexander Duncan T L, Bergmann Arno, Cuenya Beatriz Roldan
Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society Faradayweg 4-6 14195 Berlin Germany
Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH-1015 Switzerland.
EES Catal. 2023 Oct 25;2(1):311-323. doi: 10.1039/d3ey00162h. eCollection 2024 Jan 11.
Electrochemical reduction of CO (CORR) is an attractive technology to reintegrate the anthropogenic CO back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C) producing CuO nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, high-energy X-ray diffraction as well as quasi X-ray photoelectron spectroscopy. These studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CORR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CORR. This study highlights the importance of site engineering and investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.
电化学还原CO(CORR)是一项颇具吸引力的技术,可借助合适的催化剂将人为产生的CO重新纳入碳循环。本研究采用负载有CO选择性金纳米颗粒(NP)的高效多碳(C)生成氧化铜纳米立方体(NC),以研究高CO表面浓度微环境与催化性能之间的相关性。通过X射线吸收光谱、表面增强拉曼光谱、高能X射线衍射以及准X射线光电子能谱研究结构、形态和近表面组成。这些研究表明,在反应条件下,我们的催化剂的局部结构和化学环境在不断演变。随着合金的形成,在CORR过程中检测到催化剂表面存在富含CO的微环境以及平均CO结合力减弱的情况。将这些发现与催化功能联系起来,揭示了Au和Cu之间复杂的成分相互作用,其中较高的Au负载量主要促进CO的形成。尽管如此,最低Au负载量时C形成的改善最为显著,这表明Au-Cu原子相互作用对CORR中的催化功能具有有益作用。本研究强调了位点工程和研究以揭示电催化剂对反应条件的适应性的重要性,这是理解其催化行为的先决条件。