Suppr超能文献

利用 Twitter 社交网络识别药品短缺:回顾性观察研究。

Identifying Medicine Shortages With the Twitter Social Network: Retrospective Observational Study.

机构信息

Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands.

Royal Dutch Pharmacists Association, The Hague, Netherlands.

出版信息

J Med Internet Res. 2024 Aug 6;26:e51317. doi: 10.2196/51317.

Abstract

BACKGROUND

Early identification is critical for mitigating the impact of medicine shortages on patients. The internet, specifically social media, is an emerging source of health data.

OBJECTIVE

This study aimed to explore whether a routine analysis of data from the Twitter social network can detect signals of a medicine shortage and serve as an early warning system and, if so, for which medicines or patient groups.

METHODS

Medicine shortages between January 31 and December 1, 2019, were collected from the Dutch pharmacists' society's national catalog Royal Dutch Pharmacists Association (KNMP) Farmanco. Posts on these shortages were collected by searching for the name, the active pharmaceutical ingredient, or the first word of the brand name of the medicines in shortage. Posts were then selected based on relevant keywords that potentially indicated a shortage and the percentage of shortages with at least 1 post was calculated. The first posts per shortage were analyzed for their timing (median number of days, including the IQR) versus the national catalog, also stratified by disease and medicine characteristics. The content of the first post per shortage was analyzed descriptively for its reporting stakeholder and the nature of the post.

RESULTS

Of the 341 medicine shortages, 102 (29.9%) were mentioned on Twitter. Of these 102 shortages, 18 (5.3% of the total) were mentioned prior to or simultaneous to publication by KNMP Farmanco. Only 4 (1.2%) of these were mentioned on Twitter more than 14 days before. On average, posts were published with a median delay of 37 (IQR 7-81) days to publication by KNMP Farmanco. Shortages mentioned on Twitter affected a greater number of patients and lasted longer than those that were not mentioned. We could not conclusively relate either the presence or absence on Twitter to a disease area or route of administration of the medicine in shortage. The first posts on the 102 shortages were mainly published by patients (n=51, 50.0%) and health care professionals (n=46, 45.1%). We identified 8 categories of nature of content. Sharing personal experience (n=44, 43.1%) was the most common category.

CONCLUSIONS

The Twitter social network is not a suitable early warning system for medicine shortages. Twitter primarily echoes already-known information rather than spreads new information. However, Twitter or potentially any other social media platform provides the opportunity for future qualitative research in the increasingly important field of medicine shortages that investigates how a larger population of patients is affected by shortages.

摘要

背景

早期识别对于减轻药品短缺对患者的影响至关重要。互联网,特别是社交媒体,是健康数据的新兴来源。

目的

本研究旨在探讨对 Twitter 社交网络数据的常规分析是否可以发现药品短缺的信号,并作为预警系统,如是,对于哪些药品或患者群体适用。

方法

2019 年 1 月 31 日至 12 月 1 日期间,从荷兰药剂师协会的国家目录 Royal Dutch Pharmacists Association (KNMP) Farmanco 中收集药品短缺信息。通过搜索短缺药品的名称、活性药物成分或品牌名称的首字母来收集短缺信息。然后根据可能表明短缺的相关关键字选择帖子,并计算每个短缺药品的帖子比例。分析每个短缺药品的第一条帖子的时间(包括 IQR 的中位数天数)与国家目录进行对比,同时按疾病和药品特征进行分层。对每个短缺药品的第一条帖子的内容进行描述性分析,分析其报告利益相关者和帖子的性质。

结果

在 341 种药品短缺中,有 102 种(29.9%)在 Twitter 上提到。在这 102 种短缺药品中,有 18 种(占总数的 5.3%)在 KNMP Farmanco 发布之前或同时发布。其中只有 4 种(占 1.2%)在 Twitter 上的提前时间超过 14 天。平均而言,帖子的发布时间比 KNMP Farmanco 发布的时间中位数延迟了 37 天(IQR 7-81)。在 Twitter 上提到的短缺药品影响的患者人数更多,持续时间也更长,而未在 Twitter 上提到的短缺药品则影响的患者人数更少,持续时间也更短。我们无法确定在 Twitter 上的出现或不存在与短缺药品的疾病领域或给药途径有任何关系。这 102 种短缺药品的第一条帖子主要由患者(n=51,50.0%)和医疗保健专业人员(n=46,45.1%)发布。我们确定了 8 种内容性质类别。分享个人经验(n=44,43.1%)是最常见的类别。

结论

Twitter 社交网络不是药品短缺的合适预警系统。Twitter 主要是对已经知道的信息进行回应,而不是传播新信息。然而,Twitter 或潜在的任何其他社交媒体平台都为研究药品短缺这一日益重要的领域中更多患者如何受到短缺影响的未来定性研究提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a1b/11336501/6cac78e59783/jmir_v26i1e51317_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验