Suppr超能文献

用于 CADASIL 纵向研究中 MRI 脑白质高信号分割的两阶段卷积神经网络算法的开发和验证。

Development and validation of a two-stage convolutional neural network algorithm for segmentation of MRI white matter hyperintensities for longitudinal studies in CADASIL.

机构信息

Medpace, Core Laboratory, 60-77 rue de la Villette, 69003, Lyon, France.

Medpace, Biostatistics, 60-77 rue de la Villette, 69003, Lyon, France.

出版信息

Comput Biol Med. 2024 Sep;180:108936. doi: 10.1016/j.compbiomed.2024.108936. Epub 2024 Aug 5.

Abstract

BACKGROUND

Segmentation of white matter hyperintensities (WMH) in CADASIL, one of the most severe cerebral small vessel disease of genetic origin, is challenging.

METHOD

We adapted and validated an automatic method based on a convolutional neural network (CNN) algorithm and using a large dataset of 2D and/or 3D FLAIR and T1-weighted images acquired in 132 patients, to measure the progression of WMH in this condition.

RESULTS

The volume of WMH measured using this method correlated strongly with reference data validated by experts. WMH segmentation was also clearly improved compared to the BIANCA segmentation method. Combining two successive learning models was found to be of particular interest, reducing the number of false-positive voxels and the extent of under-segmentation detected after a single-stage process. With the two-stage approach, WMH progression correlated with measures derived from the reference masks for lesions increasing with age, and with the variable WMH progression trajectories at individual level. We also confirmed the expected effect of the initial load of WMH and the influence of the type of MRI acquisition on measures of this progression.

CONCLUSION

Altogether, our findings suggest that WMH progression in CADASIL can be measured automatically with adequate confidence by a CNN segmentation algorithm.

摘要

背景

CADASIL 是遗传性脑小血管病中最严重的一种,其脑白质高信号(WMH)的分割具有挑战性。

方法

我们对一种基于卷积神经网络(CNN)算法的自动分割方法进行了改进和验证,并使用了来自 132 名患者的二维和/或三维 FLAIR 和 T1 加权图像的大型数据集,以测量该疾病中 WMH 的进展情况。

结果

该方法测量的 WMH 体积与专家验证的参考数据具有很强的相关性。与 BIANCA 分割方法相比,WMH 的分割也明显得到了改善。研究发现,结合两个连续的学习模型特别有意义,它减少了假阳性体素的数量和单阶段处理后检测到的分割不足程度。使用两阶段方法,WMH 的进展与参考掩模中随年龄增加的病变测量值以及个体水平的 WMH 进展轨迹相关。我们还证实了 WMH 初始负荷的预期影响以及 MRI 采集类型对该进展测量的影响。

结论

总而言之,我们的研究结果表明,基于 CNN 分割算法的自动方法可以有信心地测量 CADASIL 中的 WMH 进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验