Suppr超能文献

一种新型人工智能辅助结肠镜检查系统用于腺瘤检测的有效性:韩国一项前瞻性、倾向评分匹配、非随机对照研究。

Effectiveness of a novel artificial intelligence-assisted colonoscopy system for adenoma detection: a prospective, propensity score-matched, non-randomized controlled study in Korea.

作者信息

Park Jung-Bin, Bae Jung Ho

机构信息

Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea.

出版信息

Clin Endosc. 2025 Jan;58(1):112-120. doi: 10.5946/ce.2024.168. Epub 2024 Aug 5.

Abstract

BACKGROUND/AIMS: The real-world effectiveness of computer-aided detection (CADe) systems during colonoscopies remains uncertain. We assessed the effectiveness of the novel CADe system, ENdoscopy as AI-powered Device (ENAD), in enhancing the adenoma detection rate (ADR) and other quality indicators in real-world clinical practice.

METHODS

We enrolled patients who underwent elective colonoscopies between May 2022 and October 2022 at a tertiary healthcare center. Standard colonoscopy (SC) was compared to ENAD-assisted colonoscopy. Eight experienced endoscopists performed the procedures in randomly assigned CADe- and non-CADe-assisted rooms. The primary outcome was a comparison of ADR between the ENAD and SC groups.

RESULTS

A total of 1,758 sex- and age-matched patients were included and evenly distributed into two groups. The ENAD group had a significantly higher ADR (45.1% vs. 38.8%, p=0.010), higher sessile serrated lesion detection rate (SSLDR) (5.7% vs. 2.5%, p=0.001), higher mean number of adenomas per colonoscopy (APC) (0.78±1.17 vs. 0.61±0.99; incidence risk ratio, 1.27; 95% confidence interval, 1.13-1.42), and longer withdrawal time (9.0±3.4 vs. 8.3±3.1, p<0.001) than the SC group. However, the mean withdrawal times were not significantly different between the two groups in cases where no polyps were detected (6.9±1.7 vs. 6.7±1.7, p=0.058).

CONCLUSIONS

ENAD-assisted colonoscopy significantly improved the ADR, APC, and SSLDR in real-world clinical practice, particularly for smaller and nonpolypoid adenomas.

摘要

背景/目的:计算机辅助检测(CADe)系统在结肠镜检查中的实际效果仍不确定。我们评估了新型CADe系统——人工智能驱动的内镜设备(ENAD)在提高实际临床实践中的腺瘤检出率(ADR)和其他质量指标方面的有效性。

方法

我们纳入了2022年5月至2022年10月在一家三级医疗中心接受择期结肠镜检查的患者。将标准结肠镜检查(SC)与ENAD辅助结肠镜检查进行比较。八名经验丰富的内镜医师在随机分配的CADe辅助和非CADe辅助房间进行操作。主要结果是比较ENAD组和SC组之间的ADR。

结果

共纳入1758名性别和年龄匹配的患者,并将其平均分为两组。ENAD组的ADR显著更高(45.1%对38.8%,p = 0.010),无蒂锯齿状病变检出率(SSLDR)更高(5.7%对2.5%,p = 0.001),每次结肠镜检查的平均腺瘤数量(APC)更多(0.78±1.17对0.61±0.99;发病风险比,1.27;95%置信区间,1.13 - 1.42),且退出时间比SC组长(9.0±3.4对8.3±3.1,p < 0.001)。然而,在未检测到息肉的病例中,两组的平均退出时间无显著差异(6.9±1.7对6.7±1.7,p = 0.058)。

结论

在实际临床实践中,ENAD辅助结肠镜检查显著提高了ADR、APC和SSLDR,特别是对于较小的和无息肉样腺瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d61c/11837574/7736ca9e19ae/ce-2024-168f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验