Suppr超能文献

深度学习计算机辅助息肉检测可降低腺瘤漏诊率:一项美国多中心随机串联结肠镜研究(CADeT-CS 试验)。

Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial).

机构信息

Center for Advanced Endoscopy, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.

Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.

出版信息

Clin Gastroenterol Hepatol. 2022 Jul;20(7):1499-1507.e4. doi: 10.1016/j.cgh.2021.09.009. Epub 2021 Sep 14.

Abstract

BACKGROUND & AIMS: Artificial intelligence-based computer-aided polyp detection (CADe) systems are intended to address the issue of missed polyps during colonoscopy. The effect of CADe during screening and surveillance colonoscopy has not previously been studied in a United States (U.S.) population.

METHODS

We conducted a prospective, multi-center, single-blind randomized tandem colonoscopy study to evaluate a deep-learning based CADe system (EndoScreener, Shanghai Wision AI, China). Patients were enrolled across 4 U.S. academic medical centers from 2019 through 2020. Patients presenting for colorectal cancer screening or surveillance were randomized to CADe colonoscopy first or high-definition white light (HDWL) colonoscopy first, followed immediately by the other procedure in tandem fashion by the same endoscopist. The primary outcome was adenoma miss rate (AMR), and secondary outcomes included sessile serrated lesion (SSL) miss rate and adenomas per colonoscopy (APC).

RESULTS

A total of 232 patients entered the study, with 116 patients randomized to undergo CADe colonoscopy first and 116 patients randomized to undergo HDWL colonoscopy first. After the exclusion of 9 patients, the study cohort included 223 patients. AMR was lower in the CADe-first group compared with the HDWL-first group (20.12% [34/169] vs 31.25% [45/144]; odds ratio [OR], 1.8048; 95% confidence interval [CI], 1.0780-3.0217; P = .0247). SSL miss rate was lower in the CADe-first group (7.14% [1/14]) vs the HDWL-first group (42.11% [8/19]; P = .0482). First-pass APC was higher in the CADe-first group (1.19 [standard deviation (SD), 2.03] vs 0.90 [SD, 1.55]; P = .0323). First-pass ADR was 50.44% in the CADe-first group and 43.64 % in the HDWL-first group (P = .3091).

CONCLUSION

In this U.S. multicenter tandem colonoscopy randomized controlled trial, we demonstrate a decrease in AMR and SSL miss rate and an increase in first-pass APC with the use of a CADe-system when compared with HDWL colonoscopy alone.

摘要

背景与目的

基于人工智能的计算机辅助息肉检测(CADe)系统旨在解决结肠镜检查中遗漏息肉的问题。CADe 在筛查和监测结肠镜检查中的效果以前并未在美国人群中进行过研究。

方法

我们进行了一项前瞻性、多中心、单盲随机串联结肠镜检查研究,以评估一种基于深度学习的 CADe 系统(EndoScreener,上海伟思医疗科技股份有限公司,中国)。该研究于 2019 年至 2020 年在美国 4 家学术医疗中心招募患者。接受结直肠癌筛查或监测的患者被随机分配至首先进行 CADe 结肠镜检查或首先进行高清白光(HDWL)结肠镜检查,随后由同一名内镜医生立即以串联方式进行另一项检查。主要结局是腺瘤遗漏率(AMR),次要结局包括锯齿状息肉遗漏率和每例结肠镜检查的腺瘤数(APC)。

结果

共有 232 例患者入组研究,其中 116 例患者随机首先接受 CADe 结肠镜检查,116 例患者随机首先接受 HDWL 结肠镜检查。排除 9 例患者后,研究队列包括 223 例患者。CADe 首先组的 AMR 低于 HDWL 首先组(20.12%[34/169]比 31.25%[45/144];比值比[OR],1.8048;95%置信区间[CI],1.0780-3.0217;P=.0247)。CADe 首先组的锯齿状息肉遗漏率(7.14%[1/14])低于 HDWL 首先组(42.11%[8/19];P=.0482)。CADe 首先组的首次通过 APC 较高(1.19[标准差(SD),2.03]比 0.90[SD,1.55];P=.0323)。CADe 首先组的首次通过 ADR 为 50.44%,HDWL 首先组为 43.64%(P=.3091)。

结论

在这项美国多中心串联结肠镜随机对照试验中,与单独使用 HDWL 结肠镜相比,我们证明 CADe 系统的使用可降低 AMR 和锯齿状息肉遗漏率,并增加首次通过 APC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验