Suppr超能文献

一种基于深度学习的利用头部非增强CT扫描预测脑内血肿扩大的框架。

A Deep Learning-Based Framework for Predicting Intracerebral Hematoma Expansion Using Head Non-contrast CT Scan.

作者信息

Li Na, Ding Shaodong, Liu Ziyang, Ye Wanxing, Liu Pan, Jing Jing, Jiang Yong, Zhao Xingquan, Liu Tao

机构信息

Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (N.L., J.J., X.Z.); China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (N.L., W.Y., J.J., Y.J., X.Z.).

Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (S.D., Z.L., T.L.).

出版信息

Acad Radiol. 2025 Jan;32(1):347-358. doi: 10.1016/j.acra.2024.07.039. Epub 2024 Aug 5.

Abstract

RATIONALE AND OBJECTIVES

Hematoma expansion (HE) in intracerebral hemorrhage (ICH) is a critical factor affecting patient outcomes, yet effective clinical tools for predicting HE are currently lacking. We aim to develop a fully automated framework based on deep learning for predicting HE using only clinical non-contrast CT (NCCT) scans.

MATERIALS AND METHODS

A large retrospective dataset (n = 2484) was collected from 84 centers, while a prospective dataset (n = 500) was obtained from 26 additional centers. Baseline NCCT scans and follow-up NCCT scans were conducted within 6 h and 48 h from symptom onset, respectively. HE was defined as a volume increase of more than 6 mL on the follow-up NCCT. The retrospective dataset was divided into a training set (n = 1876) and a validation set (n = 608) by patient inclusion time. A two-stage framework was trained to predict HE, and its performance was evaluated on both the validation and prospective sets. Receiver operating characteristics area under the curve (AUC), sensitivity, and specificity were leveraged.

RESULTS

Our two-stage framework achieved an AUC of 0.760 (95% CI 0.724-0.799) on the retrospective validation set and 0.806 (95% CI 0.750-0.859) on the prospective set, outperforming the commonly used BAT score, which had AUCs of 0.582 and 0.699, respectively.

CONCLUSION

Our framework can automatically and robustly identify ICH patients at high risk of HE using admission head NCCT scans, providing more accurate predictions than the BAT score.

摘要

原理与目的

脑出血(ICH)中的血肿扩大(HE)是影响患者预后的关键因素,但目前缺乏有效的预测HE的临床工具。我们旨在开发一种基于深度学习的全自动框架,仅使用临床非增强CT(NCCT)扫描来预测HE。

材料与方法

从84个中心收集了一个大型回顾性数据集(n = 2484),同时从另外26个中心获得了一个前瞻性数据集(n = 500)。分别在症状发作后6小时内和48小时内进行基线NCCT扫描和随访NCCT扫描。HE定义为随访NCCT上体积增加超过6 mL。回顾性数据集按患者纳入时间分为训练集(n = 1876)和验证集(n = 608)。训练了一个两阶段框架来预测HE,并在验证集和前瞻性集上评估其性能。利用曲线下面积(AUC)、敏感性和特异性的受试者工作特征曲线进行评估。

结果

我们的两阶段框架在回顾性验证集上的AUC为0.760(95%CI 0.724 - 0.799),在前瞻性集上为0.806(95%CI 0.750 - 0.859),优于常用的BAT评分,其AUC分别为0.582和0.699。

结论

我们的框架可以使用入院时头部NCCT扫描自动且稳健地识别有HE高风险的ICH患者,提供比BAT评分更准确的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验