Suppr超能文献

使用 XClone 对 scRNA-seq 数据进行等位基因特异性拷贝数改变的稳健分析。

Robust analysis of allele-specific copy number alterations from scRNA-seq data with XClone.

机构信息

School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.

Center for Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.

出版信息

Nat Commun. 2024 Aug 6;15(1):6684. doi: 10.1038/s41467-024-51026-0.

Abstract

Somatic copy number alterations (CNAs) are major mutations that contribute to the development and progression of various cancers. Despite a few computational methods proposed to detect CNAs from single-cell transcriptomic data, the technical sparsity of such data makes it challenging to identify allele-specific CNAs, particularly in complex clonal structures. In this study, we present a statistical method, XClone, that strengthens the signals of read depth and allelic imbalance by effective smoothing on cell neighborhood and gene coordinate graphs to detect haplotype-aware CNAs from scRNA-seq data. By applying XClone to multiple datasets with challenging compositions, we demonstrated its ability to robustly detect different types of allele-specific CNAs and potentially indicate whole genome duplication, therefore enabling the discovery of corresponding subclones and the dissection of their phenotypic impacts.

摘要

体细胞拷贝数改变(CNAs)是导致多种癌症发生和发展的主要突变。尽管已经提出了一些从单细胞转录组数据中检测 CNA 的计算方法,但这种数据的技术稀疏性使得鉴定等位基因特异性 CNA 变得具有挑战性,尤其是在复杂的克隆结构中。在这项研究中,我们提出了一种统计方法 XClone,该方法通过在细胞邻域和基因坐标图上进行有效平滑来增强读深度和等位基因失衡的信号,从而从 scRNA-seq 数据中检测出单倍型感知的 CNA。通过将 XClone 应用于具有挑战性组成的多个数据集,我们证明了它能够稳健地检测不同类型的等位基因特异性 CNA,并可能指示全基因组复制,从而能够发现相应的亚克隆并剖析它们的表型影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c55/11303794/b07c29bc7609/41467_2024_51026_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验