Suppr超能文献

基于人工智能的可扩展胸部X光片诊断方法的开发与外部验证:一项多国横断面研究。

Development and External Validation of an Artificial Intelligence-Based Method for Scalable Chest Radiograph Diagnosis: A Multi-Country Cross-Sectional Study.

作者信息

Liu Zeye, Xu Jing, Yin Chengliang, Han Guojing, Che Yue, Fan Ge, Li Xiaofei, Xie Lixin, Bao Lei, Peng Zimin, Wang Jinduo, Chen Yan, Zhang Fengwen, Ouyang Wenbin, Wang Shouzheng, Guo Junwei, Ma Yanqiu, Meng Xiangzhi, Fan Taibing, Zhi Aihua, Yi Kang, You Tao, Yang Yuejin, Liu Jue, Shi Yi, Huang Yuan, Pan Xiangbin

机构信息

Department of Cardiac Surgery, Peking University People's Hospital, Peking University, Xicheng District, Beijing, China.

Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China.

出版信息

Research (Wash D C). 2024 Aug 6;7:0426. doi: 10.34133/research.0426. eCollection 2024.

Abstract

Chest radiography is a crucial tool for diagnosing thoracic disorders, but interpretation errors and a lack of qualified practitioners can cause delays in treatment. This study aimed to develop a reliable multi-classification artificial intelligence (AI) tool to improve the accuracy and efficiency of chest radiograph diagnosis. We developed a convolutional neural network (CNN) capable of distinguishing among 26 thoracic diagnoses. The model was trained and externally validated using 795,055 chest radiographs from 13 datasets across 4 countries. The CNN model achieved an average area under the curve (AUC) of 0.961 across all 26 diagnoses in the testing set. COVID-19 detection achieved perfect accuracy (AUC 1.000, [95% confidence interval {CI}, 1.000 to 1.000]), while effusion or pleural effusion detection showed the lowest accuracy (AUC 0.8453, [95% CI, 0.8417 to 0.8489]). In external validation, the model demonstrated strong reproducibility and generalizability within the local dataset, achieving an AUC of 0.9634 for lung opacity detection (95% CI, 0.9423 to 0.9702). The CNN outperformed both radiologists and nonradiological physicians, particularly in trans-device image recognition. Even for diseases not specifically trained on, such as aortic dissection, the AI model showed considerable scalability and enhanced diagnostic accuracy for physicians of varying experience levels (all < 0.05). Additionally, our model exhibited no gender bias ( > 0.05). The developed AI algorithm, now available as professional web-based software, substantively improves chest radiograph interpretation. This research advances medical imaging and offers substantial diagnostic support in clinical settings.

摘要

胸部X光检查是诊断胸部疾病的重要工具,但解读错误以及缺乏合格的从业者可能会导致治疗延误。本研究旨在开发一种可靠的多分类人工智能(AI)工具,以提高胸部X光诊断的准确性和效率。我们开发了一种能够区分26种胸部诊断的卷积神经网络(CNN)。该模型使用来自4个国家13个数据集的795,055张胸部X光片进行训练和外部验证。在测试集中,CNN模型在所有26种诊断中的平均曲线下面积(AUC)达到0.961。新冠病毒(COVID-19)检测的准确率达到了完美水平(AUC 1.000,[95%置信区间{CI},1.000至1.000]),而积液或胸腔积液检测的准确率最低(AUC 0.8453,[95% CI,0.8417至0.8489])。在外部验证中,该模型在本地数据集中表现出很强的可重复性和通用性,肺部实变检测的AUC为0.9634(95% CI,0.9423至0.9702)。CNN的表现优于放射科医生和非放射科医生,尤其是在跨设备图像识别方面。即使对于未专门训练的疾病,如主动脉夹层,该AI模型也显示出相当的可扩展性,并提高了不同经验水平医生的诊断准确性(所有P<0.05)。此外,我们的模型没有表现出性别偏见(P>0.05)。所开发的AI算法现已作为基于网络的专业软件提供,极大地改善了胸部X光片的解读。这项研究推动了医学成像的发展,并在临床环境中提供了重要的诊断支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08b8/11301699/7167085282c9/research.0426.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验