Suppr超能文献

基于多视图语义分割的青少年特发性脊柱侧弯术前X光片人工智能测量

Artificial Intelligence Measurement of Preoperative Radiographs in Adolescent Idiopathic Scoliosis Based on Multiple-View Semantic Segmentation.

作者信息

Dong Yulei, Li Jiahao, Huang Shanqi, Wu Ling, Zhao Hong, Zhao Yu

机构信息

Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Beijing Sanyuanju Technology Co., Ltd., Beijing, China.

出版信息

Global Spine J. 2025 May;15(4):1924-1931. doi: 10.1177/21925682241270036. Epub 2024 Aug 7.

Abstract

Study DesignCross-sectional study.ObjectivesImaging classification of adolescent idiopathic scoliosis (AIS) is directly related to the surgical strategy, but the artificial classification is complex and depends on doctors' experience. This study investigated deep learning-based automated classification methods (DL group) for AIS and validated the consistency of machine classification and manual classification (M group).MethodsA total of 506 cases (81 males and 425 females) and 1812 AIS full spine images in the anteroposterior (AP), lateral (LAT), left bending (LB) and right bending (RB) positions were retrospectively used for training. The mean age was 13.6 ± 1.8. The mean maximum Cobb angle was 46.8 ± 12.0. U-Net semantic segmentation neural network technology and deep learning methods were used to automatically segment and establish the alignment relationship between multiple views of the spine, and to extract spinal features such as the Cobb angle. The type of each test case was automatically calculated according to Lenke's rule. An additional 107 cases of adolescent idiopathic scoliosis imaging were prospectively used for testing. The consistency of the DL group and M group was compared.ResultsAutomatic vertebral body segmentation and recognition, multi-view alignment of the spine and automatic Cobb angle measurement were implemented. Compare to the M group, the consistency of the DL group was significantly higher in 3 aspects: type of lateral convexity (0.989 vs 0.566), lumbar curvature modifier (0.932 vs 0.738), and sagittal plane modifier (0.987 vs 0.522).ConclusionsDeep learning enables automated Cobb angle measurement and automated Lenke classification of idiopathic scoliosis whole spine radiographs with higher consistency than manual measurement classification.

摘要

研究设计

横断面研究。

目的

青少年特发性脊柱侧凸(AIS)的影像学分类与手术策略直接相关,但人工分类复杂且依赖医生经验。本研究调查了基于深度学习的AIS自动分类方法(DL组),并验证了机器分类与人工分类(M组)的一致性。

方法

回顾性使用506例患者(81例男性和425例女性)以及1812张AIS全脊柱前后位(AP)、侧位(LAT)、左侧弯(LB)和右侧弯(RB)位的图像进行训练。平均年龄为13.6±1.8岁。平均最大Cobb角为46.8±12.0。采用U-Net语义分割神经网络技术和深度学习方法自动分割并建立脊柱多视图之间的对齐关系,提取诸如Cobb角等脊柱特征。根据Lenke规则自动计算每个测试病例的类型。前瞻性地使用另外107例青少年特发性脊柱侧凸影像学病例进行测试。比较DL组和M组的一致性。

结果

实现了椎体自动分割与识别、脊柱多视图对齐以及Cobb角自动测量。与M组相比,DL组在三个方面的一致性显著更高:侧凸类型(0.989对0.566)、腰椎弯曲修正(0.932对0.738)和矢状面修正(0.987对0.522)。

结论

深度学习能够对特发性脊柱侧凸全脊柱X线片进行Cobb角自动测量和Lenke自动分类,其一致性高于人工测量分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6373/12035263/5be7af24f89e/10.1177_21925682241270036-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验