Suppr超能文献

黑磷复合负极的电化学原子力显微镜:碱金属离子电池中的电极失稳与降解机制

Electrochemical Atomic Force Microscopy of Black Phosphorus Composite Anodes: Electrode Destabilization and Degradation Mechanisms in Alkali-Ion Batteries.

作者信息

Said Samia, Shutt Rebecca R C, Zhang Zhenyu, Lovett Adam J, Howard Christopher A, Miller Thomas S

机构信息

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.

Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, U.K.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 21;16(33):43512-43525. doi: 10.1021/acsami.4c06693. Epub 2024 Aug 7.

Abstract

Despite their higher capacity compared to common intercalation- and conversion-type anodes, black phosphorus (BP) based anodes suffer from significant capacity fading attributed to the large volume expansion (∼300%) during lithiation. Downsizing BP into nanosheets has been proposed to mitigate this issue, and various methods, particularly mechanical mixing with graphitic materials (BP-C), have been explored to enhance electrochemical performance. However, the understanding of BP-C hybridization is hindered by the lack of studies focusing on fundamental degradation mechanisms within operational battery environments. Here we address this challenge by employing electrochemical atomic force microscopy (EC-AFM) to study the morphological and mechanical evolution of BP-C composite anodes during lithiation. The results reveal that BP-C binding interactions alone are insufficient to withstand the structural reorganization of BP during its alloying reaction with lithium. Furthermore, the study emphasizes the critical role of the solid electrolyte interphase (SEI) and BP-C interface evolution in determining the long-term performance of these composites, shedding light on the disparity in final electrode morphologies between binder-inclusive and binder-free BP-C composites. These findings provide crucial insights into the challenges associated with BP-based anodes and underscore the need for a deeper understanding of the dynamic behavior within operating cells for the development of stable and high-performance battery materials.

摘要

尽管与常见的嵌入型和转换型阳极相比,基于黑磷(BP)的阳极具有更高的容量,但由于锂化过程中体积大幅膨胀(约300%),基于BP的阳极仍存在显著的容量衰减问题。有人提出将BP缩小为纳米片来缓解这一问题,并探索了各种方法,特别是与石墨材料机械混合(BP-C)来提高电化学性能。然而,由于缺乏对电池运行环境中基本降解机制的研究,对BP-C杂化的理解受到了阻碍。在此,我们通过采用电化学原子力显微镜(EC-AFM)来研究BP-C复合阳极在锂化过程中的形态和力学演变,以应对这一挑战。结果表明,仅BP-C的结合相互作用不足以承受BP在与锂发生合金化反应时的结构重组。此外,该研究强调了固体电解质界面(SEI)和BP-C界面演变在决定这些复合材料长期性能方面的关键作用,揭示了含粘结剂和无粘结剂的BP-C复合材料最终电极形态的差异。这些发现为基于BP的阳极所面临的挑战提供了关键见解,并强调了深入了解运行电池内动态行为对于开发稳定和高性能电池材料的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6889/11345720/05ac692a8655/am4c06693_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验