Suppr超能文献

基于扩散模型利用口腔内光学扫描数据减少牙科锥形束CT金属伪影的方法

Metal Artifacts Reducing Method Based on Diffusion Model Using Intraoral Optical Scanning Data for Dental Cone-Beam CT.

作者信息

Wang Yuyang, Liu Xiaomo, Li Liang

出版信息

IEEE Trans Med Imaging. 2025 Sep;44(9):3529-3538. doi: 10.1109/TMI.2024.3440009.

Abstract

In dental cone-beam computed tomography (CBCT), metal implants can cause metal artifacts, affecting image quality and the final medical diagnosis. To reduce the impact of metal artifacts, our proposed metal artifacts reduction (MAR) method takes a novel approach by integrating CBCT data with intraoral optical scanning data, utilizing information from these two different modalities to correct metal artifacts in the projection domain using a guided-diffusion model. The intraoral optical scanning data provides a more accurate generation domain for the diffusion model. We have proposed a multi-channel generation method in the training and generation stage of the diffusion model, considering the physical mechanism of CBCT, to ensure the consistency of the diffusion model generation. In this paper, we present experimental results that convincingly demonstrate the feasibility and efficacy of our approach, which introduces intraoral optical scanning data into the analysis and processing of projection domain data using the diffusion model for the first time, and modifies the diffusion model to better adapt to the physical model of CBCT.

摘要

在牙科锥形束计算机断层扫描(CBCT)中,金属植入物会导致金属伪影,影响图像质量和最终的医学诊断。为了减少金属伪影的影响,我们提出的金属伪影减少(MAR)方法采用了一种新颖的方法,即将CBCT数据与口内光学扫描数据相结合,利用这两种不同模态的信息,使用引导扩散模型在投影域中校正金属伪影。口内光学扫描数据为扩散模型提供了更准确的生成域。在扩散模型的训练和生成阶段,我们考虑CBCT的物理机制,提出了一种多通道生成方法,以确保扩散模型生成的一致性。在本文中,我们展示的实验结果令人信服地证明了我们方法的可行性和有效性,该方法首次将口内光学扫描数据引入到使用扩散模型对投影域数据的分析和处理中,并对扩散模型进行了修改,以更好地适应CBCT的物理模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验