Suppr超能文献

b-MAR:一种用于牙科 CBCT 中金属伪影减少的双向伪影表示学习框架。

b-MAR: bidirectional artifact representations learning framework for metal artifact reduction in dental CBCT.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.

Pazhou Lab (Huangpu), Guangzhou 510700, People's Republic of China.

出版信息

Phys Med Biol. 2024 Jul 11;69(14). doi: 10.1088/1361-6560/ad3c0a.

Abstract

Metal artifacts in computed tomography (CT) images hinder diagnosis and treatment significantly. Specifically, dental cone-beam computed tomography (Dental CBCT) images are seriously contaminated by metal artifacts due to the widespread use of low tube voltages and the presence of various high-attenuation materials in dental structures. Existing supervised metal artifact reduction (MAR) methods mainly learn the mapping of artifact-affected images to clean images, while ignoring the modeling of the metal artifact generation process. Therefore, we propose the bidirectional artifact representations learning framework to adaptively encode metal artifacts caused by various dental implants and model the generation and elimination of metal artifacts, thereby improving MAR performance.Specifically, we introduce an efficient artifact encoder to extract multi-scale representations of metal artifacts from artifact-affected images. These extracted metal artifact representations are then bidirectionally embedded into both the metal artifact generator and the metal artifact eliminator, which can simultaneously improve the performance of artifact removal and artifact generation. The artifact eliminator learns artifact removal in a supervised manner, while the artifact generator learns artifact generation in an adversarial manner. To further improve the performance of the bidirectional task networks, we propose artifact consistency loss to align the consistency of images generated by the eliminator and the generator with or without embedding artifact representations.To validate the effectiveness of our algorithm, experiments are conducted on simulated and clinical datasets containing various dental metal morphologies. Quantitative metrics are calculated to evaluate the results of the simulation tests, which demonstrate b-MAR improvements of >1.4131 dB in PSNR, >0.3473 HU decrements in RMSE, and >0.0025 promotion in structural similarity index measurement over the current state-of-the-art MAR methods. All results indicate that the proposed b-MAR method can remove artifacts caused by various metal morphologies and restore the structural integrity of dental tissues effectively.The proposed b-MAR method strengthens the joint learning of the artifact removal process and the artifact generation process by bidirectionally embedding artifact representations, thereby improving the model's artifact removal performance. Compared with other comparison methods, b-MAR can robustly and effectively correct metal artifacts in dental CBCT images caused by different dental metals.

摘要

金属伪影会显著妨碍计算机断层扫描(CT)图像的诊断和治疗。具体而言,由于低管电压的广泛应用以及牙科结构中存在各种高衰减材料,牙科锥形束 CT(Dental CBCT)图像受到严重的金属伪影污染。现有的有监督金属伪影减少(MAR)方法主要学习受伪影影响的图像到干净图像的映射,而忽略了金属伪影生成过程的建模。因此,我们提出了双向伪影表示学习框架,自适应地编码各种牙科植入物引起的金属伪影,并对金属伪影的生成和消除进行建模,从而提高 MAR 性能。具体来说,我们引入了一种高效的伪影编码器,从受伪影影响的图像中提取金属伪影的多尺度表示。然后,这些提取的金属伪影表示被双向嵌入到金属伪影生成器和金属伪影消除器中,这可以同时提高伪影去除和生成的性能。伪影消除器以监督的方式学习伪影去除,而伪影生成器以对抗的方式学习伪影生成。为了进一步提高双向任务网络的性能,我们提出了伪影一致性损失,以对齐消除器和生成器生成的图像的一致性,无论是否嵌入伪影表示。为了验证我们算法的有效性,我们在包含各种牙科金属形态的模拟和临床数据集上进行了实验。定量指标用于评估模拟测试的结果,结果表明,与当前最先进的 MAR 方法相比,b-MAR 在 PSNR 中提高了>1.4131dB,在 RMSE 中降低了>0.3473HU,在结构相似性指数测量中提高了>0.0025。所有结果表明,所提出的 b-MAR 方法可以有效去除各种金属形态引起的伪影,并有效恢复牙科组织的结构完整性。所提出的 b-MAR 方法通过双向嵌入伪影表示来加强伪影去除过程和伪影生成过程的联合学习,从而提高了模型的伪影去除性能。与其他比较方法相比,b-MAR 可以稳健有效地校正不同牙科金属引起的牙科 CBCT 图像中的金属伪影。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验