Suppr超能文献

学习竞争下的进化后果。

The evolutionary consequences of learning under competition.

机构信息

School of Mathematics, University of Bristol , Bristol BS8 1UG, UK.

Centre for Ecology and Conservation, University of Exeter , Exeter TR10 9FE, UK.

出版信息

Proc Biol Sci. 2024 Aug;291(2028):20241141. doi: 10.1098/rspb.2024.1141. Epub 2024 Aug 7.

Abstract

Learning is a taxonomically widespread process by which animals change their behavioural responses to stimuli as a result of experience. In this way, it plays a crucial role in the development of individual behaviour and underpins substantial phenotypic variation within populations. Nevertheless, the impact of learning in social contexts on evolutionary change is not well understood. Here, we develop game theoretical models of competition for resources in small groups (e.g. producer-scrounger and hawk-dove games) in which actions are controlled by reinforcement learning and show that biases in the subjective valuation of different actions readily evolve. Moreover, in many cases, the convergence stable levels of bias exist at fitness minima and therefore lead to disruptive selection on learning rules and, potentially, to the evolution of genetic polymorphisms. Thus, we show how reinforcement learning in social contexts can be a driver of evolutionary diversification. In addition, we consider the evolution of ability in our games, showing that learning can also drive disruptive selection on the ability to perform a task.

摘要

学习是一种在动物中广泛存在的过程,通过这种过程,动物会根据经验改变对刺激的行为反应。通过这种方式,学习在个体行为的发展中起着至关重要的作用,并为种群内的大量表型变异提供了基础。然而,学习在社会环境中对进化变化的影响还没有被很好地理解。在这里,我们开发了一个小游戏理论模型,用于模拟小群体中对资源的竞争(例如生产者-觅食者和鹰鸽博弈),在这些模型中,行为是由强化学习控制的,并且表明对不同行为的主观评价的偏差很容易进化。此外,在许多情况下,存在着在适应度最小值的收敛稳定的偏见水平,因此会对学习规则进行破坏性选择,并可能导致遗传多态性的进化。因此,我们展示了强化学习在社会环境中如何成为进化多样化的驱动力。此外,我们还考虑了我们的游戏中的能力进化,表明学习也可以驱动对完成任务的能力的破坏性选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5834/11305653/a3b5d4feed12/rspb.2024.1141.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验