Suppr超能文献

社会网络中的行为专门化和学习。

Behavioural specialization and learning in social networks.

机构信息

Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden.

Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK.

出版信息

Proc Biol Sci. 2022 Aug 10;289(1980):20220954. doi: 10.1098/rspb.2022.0954.

Abstract

Interactions in social groups can promote behavioural specialization. One way this can happen is when individuals engage in activities with two behavioural options and learn which option to choose. We analyse interactions in groups where individuals learn from playing games with two actions and negatively frequency-dependent payoffs, such as producer-scrounger, caller-satellite, or hawk-dove games. Group members are placed in social networks, characterized by the group size and the number of neighbours to interact with, ranging from just a few neighbours to interactions between all group members. The networks we analyse include ring lattices and the much-studied small-world networks. By implementing two basic reinforcement-learning approaches, action-value learning and actor-critic learning, in different games, we find that individuals often show behavioural specialization. Specialization develops more rapidly when there are few neighbours in a network and when learning rates are high. There can be learned specialization also with many neighbours, but we show that, for action-value learning, behavioural consistency over time is higher with a smaller number of neighbours. We conclude that frequency-dependent competition for resources is a main driver of specialization. We discuss our theoretical results in relation to experimental and field observations of behavioural specialization in social situations.

摘要

社交群体中的相互作用可以促进行为专业化。其中一种方式是,当个体从事具有两种行为选择的活动并学习选择哪种选择时。我们分析了个体通过玩具有两种动作和负频率相关收益的游戏(如生产者-掠夺者、呼叫者-卫星或鹰鸽游戏)来学习的群体中的相互作用。群体成员被安置在社交网络中,其特征是群体大小和与之交互的邻居数量,从只有几个邻居到所有群体成员之间的交互。我们分析的网络包括环晶格和研究得较多的小世界网络。通过在不同的游戏中实现两种基本的强化学习方法,即动作值学习和动作-批评者学习,我们发现个体通常表现出行为专业化。当网络中的邻居较少且学习率较高时,专业化发展得更快。在有很多邻居的情况下也可以实现专业化,但我们表明,对于动作值学习,随着邻居数量的减少,随着时间的推移行为一致性更高。我们得出结论,资源的频率相关竞争是专业化的主要驱动因素。我们将我们的理论结果与社交情境中行为专业化的实验和实地观察进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34a6/9363987/51d91d7320ee/rspb20220954f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验