Suppr超能文献

通过强化学习实现社会优势的演变

The Evolution of Social Dominance through Reinforcement Learning.

作者信息

Leimar Olof

出版信息

Am Nat. 2021 May;197(5):560-575. doi: 10.1086/713758. Epub 2021 Mar 30.

Abstract

AbstractGroups of social animals are often organized into dominance hierarchies that are formed through pairwise interactions. There is much experimental data on hierarchies, examining such things as winner, loser, and bystander effects, as well as the linearity and replicability of hierarchies, but there is a lack evolutionary analyses of these basic observations. Here I present a game theory model of hierarchy formation in which individuals adjust their aggressive behavior toward other group members through reinforcement learning. Individual traits such as the tendency to generalize learning between interactions with different individuals, the rate of learning, and the initial tendency to be aggressive are genetically determined and can be tuned by evolution. I find that evolution favors individuals with high social competence, making use of individual recognition, bystander observational learning, and, to a limited extent, generalizing learned behavior between opponents when adjusting their behavior toward other group members. The results are in qualitative agreement with experimental data, for instance, in finding weaker winner effects compared to loser effects.

摘要

摘要

群居动物群体通常会形成通过两两互动构建的优势等级制度。关于等级制度有大量实验数据,研究诸如赢家、输家及旁观者效应,以及等级制度的线性和可重复性等,但对这些基本观察结果缺乏进化分析。在此,我提出一个等级制度形成的博弈论模型,其中个体通过强化学习调整其对其他群体成员的攻击行为。个体特征,如在与不同个体互动间进行学习泛化的倾向、学习速率以及初始攻击倾向,是由基因决定的,并且可通过进化进行调整。我发现进化有利于具有高社交能力的个体,这些个体在调整对其他群体成员的行为时,会利用个体识别、旁观者观察学习,并在有限程度上在对手之间泛化习得行为。研究结果与实验数据在定性上一致,例如,发现赢家效应比输家效应更弱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验