Suppr超能文献

肝硬化住院患者医院感染及预后预测模型的建立与验证

Development and validation of prediction models for nosocomial infection and prognosis in hospitalized patients with cirrhosis.

作者信息

Li Shuwen, Zhang Yu, Lin Yushi, Zheng Luyan, Fang Kailu, Wu Jie

机构信息

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Antimicrob Resist Infect Control. 2024 Aug 7;13(1):85. doi: 10.1186/s13756-024-01444-y.

Abstract

BACKGROUND

Nosocomial infections (NIs) frequently occur and adversely impact prognosis for hospitalized patients with cirrhosis. This study aims to develop and validate two machine learning models for NIs and in-hospital mortality risk prediction.

METHODS

The Prediction of Nosocomial Infection and Prognosis in Cirrhotic patients (PIPC) study included hospitalized patients with cirrhosis at the Qingchun Campus of the First Affiliated Hospital of Zhejiang University. We then assessed several machine learning algorithms to construct predictive models for NIs and prognosis. We validated the best-performing models with bootstrapping techniques and an external validation dataset. The accuracy of the predictions was evaluated through sensitivity, specificity, predictive values, and likelihood ratios, while predictive robustness was examined through subgroup analyses and comparisons between models.

RESULTS

We enrolled 1,297 patients into derivation cohort and 496 patients into external validation cohort. Among the six algorithms assessed, the Random Forest algorithm performed best. For NIs, the PIPC-NI model achieved an area under the curve (AUC) of 0.784 (95% confidence interval [CI] 0.741-0.826), a sensitivity of 0.712, and a specificity of 0.702. For in-hospital mortality, the PIPC- mortality model achieved an AUC of 0.793 (95% CI 0.749-0.836), a sensitivity of 0.769, and a specificity of 0.701. Moreover, our PIPC models demonstrated superior predictive performance compared to the existing MELD, MELD-Na, and Child-Pugh scores.

CONCLUSIONS

The PIPC models showed good predictive power and may facilitate healthcare providers in easily assessing the risk of NIs and prognosis among hospitalized patients with cirrhosis.

摘要

背景

医院感染(NI)频繁发生,对肝硬化住院患者的预后产生不利影响。本研究旨在开发和验证两个用于预测医院感染和院内死亡风险的机器学习模型。

方法

肝硬化患者医院感染及预后预测(PIPC)研究纳入了浙江大学第一附属医院青春院区的肝硬化住院患者。然后,我们评估了几种机器学习算法,以构建医院感染和预后的预测模型。我们使用自助法技术和外部验证数据集对表现最佳的模型进行了验证。通过敏感性、特异性、预测值和似然比评估预测的准确性,同时通过亚组分析和模型间比较来检验预测的稳健性。

结果

我们将1297例患者纳入推导队列,496例患者纳入外部验证队列。在评估的六种算法中,随机森林算法表现最佳。对于医院感染,PIPC-NI模型的曲线下面积(AUC)为0.784(95%置信区间[CI]0.741-0.826),敏感性为0.712,特异性为0.702。对于院内死亡,PIPC-死亡模型的AUC为0.793(95%CI 0.749-0.836),敏感性为0.769,特异性为0.701。此外,与现有的终末期肝病模型(MELD)、MELD-Na和Child-Pugh评分相比,我们的PIPC模型表现出更好的预测性能。

结论

PIPC模型显示出良好的预测能力,可能有助于医疗服务提供者轻松评估肝硬化住院患者的医院感染风险和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e372/11304655/a562df409fbb/13756_2024_1444_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验