Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas.
Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas.
JAMA Netw Open. 2020 Nov 2;3(11):e2023780. doi: 10.1001/jamanetworkopen.2020.23780.
Machine-learning algorithms offer better predictive accuracy than traditional prognostic models but are too complex and opaque for clinical use.
To compare different machine learning methods in predicting overall mortality in cirrhosis and to use machine learning to select easily scored clinical variables for a novel cirrhosis prognostic model.
DESIGN, SETTING, AND PARTICIPANTS: This prognostic study used a retrospective cohort of adult patients with cirrhosis or its complications seen in 130 hospitals and affiliated ambulatory clinics in the integrated, national Veterans Affairs health care system from October 1, 2011, to September 30, 2015. Patients were followed up through December 31, 2018. Data were analyzed from October 1, 2017, to May 31, 2020.
Potential predictors included demographic characteristics; liver disease etiology, severity, and complications; use of health care resources; comorbid conditions; and comprehensive laboratory and medication data. Patients were randomly selected for model development (66.7%) and validation (33.3%). Three different statistical and machine learning methods were evaluated: gradient descent boosting, logistic regression with least absolute shrinkage and selection operator (LASSO) regularization, and logistic regression with LASSO constrained to select no more than 10 predictors (partial pathway model). Predictor inclusion and model performance were evaluated in a 5-fold cross-validation. Last, the predictors identified in the most parsimonious (the partial path) model were refit using maximum-likelihood estimation (Cirrhosis Mortality Model [CiMM]), and its predictive performance was compared with that of the widely used Model for End Stage Liver Disease with sodium (MELD-Na) score.
All-cause mortality.
Of the 107 939 patients with cirrhosis (mean [SD] age, 62.7 [9.6] years; 96.6% male; 66.3% white, 18.4% African American), the annual mortality rate ranged from 8.8% to 15.3%. In total, 32.7% of patients died within 3 years, and 46.2% died within 5 years after the index date. Models predicting 1-year mortality had good discrimination for the gradient descent boosting (area under the receiver operating characteristics curve [AUC], 0.81; 95% CI, 0.80-0.82), logistic regression with LASSO regularization (AUC, 0.78; 95% CI, 0.77-0.79), and the partial path logistic model (AUC, 0.78; 95% CI, 0.76-0.78). All models showed good calibration. The final CiMM model with machine learning-derived clinical variables offered significantly better discrimination than the MELD-Na score, with AUCs of 0.78 (95% CI, 0.77-0.79) vs 0.67 (95% CI, 0.66-0.68) for 1-year mortality, respectively (DeLong z = 17.00; P < .001).
In this study, simple machine learning techniques performed as well as the more advanced ensemble gradient boosting. Using the clinical variables identified from simple machine learning in a cirrhosis mortality model produced a new score more transparent than machine learning and more predictive than the MELD-Na score.
机器学习算法提供了比传统预后模型更好的预测准确性,但对于临床应用来说过于复杂和不透明。
比较不同的机器学习方法在预测肝硬化总体死亡率中的应用,并使用机器学习为新的肝硬化预后模型选择易于评分的临床变量。
设计、地点和参与者:这项预后研究使用了 2011 年 10 月 1 日至 2015 年 9 月 30 日期间在退伍军人事务部综合国家医疗保健系统的 130 家医院和附属门诊诊所中看到的成年肝硬化或其并发症患者的回顾性队列。患者随访至 2018 年 12 月 31 日。数据于 2017 年 10 月 1 日至 2020 年 5 月 31 日进行分析。
潜在预测因子包括人口统计学特征;肝脏疾病病因、严重程度和并发症;卫生保健资源的使用;合并症;以及综合实验室和药物数据。患者随机选择用于模型开发(66.7%)和验证(33.3%)。评估了三种不同的统计和机器学习方法:梯度下降增强、最小绝对收缩和选择算子(LASSO)正则化的逻辑回归,以及限制选择不超过 10 个预测因子的 LASSO 约束的逻辑回归(部分路径模型)。在 5 折交叉验证中评估了预测因子的纳入和模型性能。最后,使用最大似然估计(肝硬化死亡率模型 [CiMM])重新拟合在最简约(部分路径)模型中确定的预测因子,并将其预测性能与广泛使用的模型进行比较。用于终末期肝病的钠(MELD-Na)评分。
全因死亡率。
在 107939 例肝硬化患者中(平均[标准差]年龄,62.7[9.6]岁;96.6%为男性;66.3%为白人,18.4%为非裔美国人),年死亡率范围为 8.8%至 15.3%。总共有 32.7%的患者在 3 年内死亡,46.2%的患者在指数日期后 5 年内死亡。预测 1 年死亡率的模型对于梯度下降增强(接受者操作特征曲线下面积[AUROC],0.81;95%CI,0.80-0.82)、具有 LASSO 正则化的逻辑回归(AUROC,0.78;95%CI,0.77-0.79)和部分路径逻辑模型具有良好的判别能力(AUROC,0.78;95%CI,0.76-0.78)。所有模型均显示出良好的校准。使用机器学习衍生的临床变量的最终 CiMM 模型与 MELD-Na 评分相比,提供了显著更好的鉴别能力,1 年死亡率的 AUC 分别为 0.78(95%CI,0.77-0.79)和 0.67(95%CI,0.66-0.68)(DeLong z=17.00;P<0.001)。
在这项研究中,简单的机器学习技术与更先进的集成梯度增强一样有效。使用简单机器学习从肝硬化死亡率模型中确定的临床变量生成了一个新的评分,该评分比机器学习更透明,比 MELD-Na 评分更具预测性。