Suppr超能文献

利用生物信息学鉴定和验证神经性疼痛中与衰老相关的基因

Identification and validation of aging-related genes in neuropathic pain using bioinformatics.

作者信息

Gao Hui, Dong Guoqi, Yao Yong, Yang Huayuan

机构信息

School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

出版信息

Front Genet. 2024 Jul 24;15:1430275. doi: 10.3389/fgene.2024.1430275. eCollection 2024.

Abstract

BACKGROUND

Neuropathic pain (NP) is a debilitating and refractory chronic pain with a higher prevalence especially in elderly patients. Cell senescence considered a key pathogenic factor in NP. The objective of this research is to discover genes associated with aging in peripheral blood of individuals with NP using bioinformatics techniques.

METHODS

Two cohorts (GSE124272 and GSE150408) containing peripheral blood samples of NP were downloaded from the GEO database. By merging the two cohorts, differentially expressed aging-related genes (DE-ARGs) were obtained by intersection with aging-related genes. The potential biological mechanisms of DE-ARGs were further analyzed through GO and KEGG. Three machine learning methods, namely, LASSO, SVM-RFE, and Random Forest, were utilized to identify diagnostic biomarkers. A Nomogram model was developed to assess their diagnostic accuracy. The validation of biomarker expression and diagnostic effectiveness was conducted in three distinct pain cohorts. The CIBERSORT algorithm was employed to evaluate the immune cell composition in the peripheral blood of patients with NP and investigate its association with the expression of diagnostic biomarkers.

RESULTS

This study identified a total of 24 DE-ARGs, mainly enriched in "Chemokine signaling pathway," "Inflammatory mediator regulation of TRP channels," "HIF-1 signaling pathway" and "FOXO signaling pathway". Three machine learning algorithms identified a total of four diagnostic biomarkers (CEBPA, CEACAM1, BTG3 and IL-1R1) with good diagnostic performance and the similar expression difference trend in different types of pain cohorts. The expression levels of CEACAM1 and IL-1R1 exhibit a positive correlation with the percentage of neutrophils.

CONCLUSION

Using machine learning techniques, our research identified four diagnostic biomarkers related to aging in peripheral blood, providing innovative approaches for the diagnosis and treatment of NP.

摘要

背景

神经性疼痛(NP)是一种使人衰弱且难治的慢性疼痛,在老年患者中患病率更高。细胞衰老被认为是NP的关键致病因素。本研究的目的是利用生物信息学技术发现NP患者外周血中与衰老相关的基因。

方法

从基因表达综合数据库(GEO数据库)下载两个包含NP外周血样本的队列(GSE124272和GSE150408)。通过合并这两个队列,与衰老相关基因进行交集分析以获得差异表达的衰老相关基因(DE-ARGs)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)进一步分析DE-ARGs的潜在生物学机制。采用三种机器学习方法,即套索回归(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林,来识别诊断生物标志物。构建列线图模型以评估其诊断准确性。在三个不同的疼痛队列中对生物标志物表达和诊断有效性进行验证。采用CIBERSORT算法评估NP患者外周血中的免疫细胞组成,并研究其与诊断生物标志物表达的关联。

结果

本研究共鉴定出24个DE-ARGs,主要富集于“趋化因子信号通路”、“TRP通道的炎症介质调节”、“缺氧诱导因子1(HIF-1)信号通路”和“叉头框O(FOXO)信号通路”。三种机器学习算法共鉴定出四个诊断生物标志物(CCAAT增强子结合蛋白α(CEBPA)、癌胚抗原相关细胞黏附分子1(CEACAM1)、BTG3和白细胞介素1受体1(IL-1R1)),它们具有良好的诊断性能,且在不同类型的疼痛队列中具有相似的表达差异趋势。CEACAM1和IL-1R1的表达水平与中性粒细胞百分比呈正相关。

结论

通过机器学习技术,我们的研究在外周血中鉴定出四个与衰老相关的诊断生物标志物,为NP的诊断和治疗提供了创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e10/11303200/88ce6fed269f/fgene-15-1430275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验