Halner Andreas, Hankey Luke, Liang Zhu, Pozzetti Francesco, Szulc Daniel, Mi Ella, Liu Geoffrey, Kessler Benedikt M, Syed Junetha, Liu Peter Jianrui
Oxford Cancer Analytics Ltd, 696, BioEscalator, Innovation Building, Old Road Campus, Roosevelt Drive, Headington, Oxford, UK.
Princess Margaret Cancer Centre, University Health Network, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
iScience. 2023 Apr 11;26(5):106610. doi: 10.1016/j.isci.2023.106610. eCollection 2023 May 19.
Cancer is a leading cause of mortality worldwide. Over 50% of cancers are diagnosed late, rendering many treatments ineffective. Existing liquid biopsy studies demonstrate a minimally invasive and inexpensive approach for disease detection but lack parsimonious biomarker selection, exhibit poor cancer detection performance and lack appropriate validation and testing. We established a tailored machine learning pipeline, DEcancer, for liquid biopsy analysis that addresses these limitations and improved performance. In a test set from a published cohort of 1,005 patients including 8 cancer types and 812 cancer-free individuals, DEcancer increased stage 1 cancer detection sensitivity across cancer types from 48 to 90%. In addition, with a test set cohort of patients from a high dimensional proteomics dataset of 61 lung cancer patients and 80 cancer-free individuals, DEcancer's performance using a 14-43 protein panel was comparable to 1,000 original proteins. DEcancer is a promising tool which may facilitate improved cancer detection and management.
癌症是全球主要的死亡原因。超过50%的癌症在晚期才被诊断出来,这使得许多治疗方法无效。现有的液体活检研究展示了一种用于疾病检测的微创且低成本的方法,但缺乏简洁的生物标志物选择,癌症检测性能较差,且缺乏适当的验证和测试。我们建立了一个定制的机器学习流程DEcancer,用于液体活检分析,以解决这些局限性并提高性能。在一个来自已发表队列的测试集中,该队列包括1005名患者(涵盖8种癌症类型)和812名无癌个体,DEcancer将1期癌症在各癌症类型中的检测灵敏度从48%提高到了90%。此外,在一个来自61名肺癌患者和80名无癌个体的高维蛋白质组学数据集的患者测试集中,使用14 - 43种蛋白质组合的DEcancer的性能与1000种原始蛋白质相当。DEcancer是一种很有前景的工具,可能有助于改善癌症检测和管理。