Suppr超能文献

人工智能能看穿你:眼动可反映出马基雅维利主义和外向性。

AI can see you: Machiavellianism and extraversion are reflected in eye-movements.

机构信息

Laboratory for Social & Cognitive Informatics, HSE University, Saint-Petersburg, Russia.

University of Osnabrück, Osnabrück, Germany.

出版信息

PLoS One. 2024 Aug 28;19(8):e0308631. doi: 10.1371/journal.pone.0308631. eCollection 2024.

Abstract

INTRODUCTION

Recent studies showed an association between personality traits and individual patterns of visual behaviour in laboratory and other settings. The current study extends previous research by measuring multiple personality traits in natural settings; and by comparing accuracy of prediction of multiple machine learning algorithms.

METHODS

Adolescent participants (N = 35) completed personality questionnaires (Big Five Inventory and Short Dark Triad Questionnaire) and visited an interactive museum while their eye movements were recorded with head-mounted eye tracking. To predict personality traits the eye-movement data was analysed using eight machine-learning methods: Random Forest, Adaboost, Naive Bayes, Support Vector Machine, Logistic Regression, k Nearest Neighbours, Decision Tree and a three-layer Perceptron.

RESULTS AND DISCUSSION

Extracted eye movement features introduced to machine learning algorithms predicted personality traits with above 33% chance accuracy (34%-48%). This result is comparable to previous ecologically valid studies, but lower than in laboratory-based research. Better prediction was achieved for Machiavellianism and Extraversion compared to other traits (10 and 9 predictions above the chance level by different algorithms from different parts of the recording). Conscientiousness, Narcissism and Psychopathy were not reliably predicted from eye movements. These differences in predictability across traits might be explained by differential activation of different traits in different situations, such as new vs. familiar, exciting vs. boring, and complex vs. simple settings. In turn, different machine learning approaches seem to be better at capturing specific gaze patterns (e.g. saccades), associated with specific traits evoked by the situation. Further research is needed to gain better insights into trait-situation-algorithm interactions.

摘要

简介

最近的研究表明,个性特征与实验室和其他环境中的个体视觉行为模式之间存在关联。本研究通过在自然环境中测量多种人格特质,并比较多种机器学习算法的预测准确性,扩展了之前的研究。

方法

青少年参与者(N=35)完成了人格问卷(大五人格量表和短暗黑三联征问卷),并在头戴式眼动追踪器记录他们的眼动时参观了一个互动博物馆。为了预测人格特质,使用八种机器学习方法(随机森林、自适应增强、朴素贝叶斯、支持向量机、逻辑回归、k 最近邻、决策树和三层感知器)对眼动数据进行分析。

结果与讨论

引入机器学习算法的眼动特征预测人格特质的准确率超过 33%(34%-48%)。这一结果与之前的生态有效性研究相当,但低于实验室研究。与其他特质相比,对马基雅维利主义和外向性的预测更为准确(不同算法从记录的不同部分有 10 次和 9 次预测超过机会水平)。从眼动中无法可靠地预测尽责性、自恋和精神病态。这些特质之间可预测性的差异可能是由于不同情境下不同特质的不同激活,例如新与熟悉、刺激与无聊、复杂与简单的情境。反过来,不同的机器学习方法似乎更擅长捕捉与特定特质相关的特定注视模式(例如扫视)。需要进一步研究以更好地了解特质-情境-算法之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82cd/11355565/cbcaeeaae796/pone.0308631.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验