Mapstone Camilla, Hunter Helen, Brison Daniel, Handl Julia, Plusa Berenika
Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Manchester, M13 9PT, United Kingdom.
Alliance Manchester Business School, University of Manchester, Manchester, M15 6PB, United Kingdom.
Biol Methods Protoc. 2024 Jul 19;9(1):bpae052. doi: 10.1093/biomethods/bpae052. eCollection 2024.
Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.
体外受精(IVF)治疗的需求正在增长;然而,成功率仍然很低,部分原因是难以选择最佳的胚胎进行移植。目前的人工评估是主观的,可能无法利用胚胎发育中最具信息量的时刻。在这里,我们应用卷积神经网络(CNN)来识别植入前人类发育中的关键窗口,这些窗口可以与胚胎活力相关联,因此适用于IVF胚胎的早期分级。我们展示了在这些发育时间点训练的机器学习模型如何用于完善整体胚胎活力评估。利用迁移学习的众所周知的能力,我们展示了CNN模型在非常有限的数据集上的性能,为逐诊所使用铺平了道路,以适应局部数据的异质性。