Vitrolife A/S, Aarhus, Denmark.
Sci Rep. 2023 Mar 14;13(1):4235. doi: 10.1038/s41598-023-31136-3.
This work describes the development and validation of a fully automated deep learning model, iDAScore v2.0, for the evaluation of human embryos incubated for 2, 3, and 5 or more days. We trained and evaluated the model on an extensive and diverse dataset including 181,428 embryos from 22 IVF clinics across the world. To discriminate the transferred embryos with known outcome, we show areas under the receiver operating curve ranging from 0.621 to 0.707 depending on the day of transfer. Predictive performance increased over time and showed a strong correlation with morphokinetic parameters. The model's performance is equivalent to the KIDScore D3 model on day 3 embryos while it significantly surpasses the performance of KIDScore D5 v3 on day 5+ embryos. This model provides an analysis of time-lapse sequences without the need for user input, and provides a reliable method for ranking embryos for their likelihood of implantation, at both cleavage and blastocyst stages. This greatly improves embryo grading consistency and saves time compared to traditional embryo evaluation methods.
这项工作描述了一个完全自动化的深度学习模型 iDAScore v2.0 的开发和验证,用于评估培养了 2、3 天和 5 天或更长时间的人类胚胎。我们在一个广泛而多样的数据集上训练和评估了该模型,该数据集包括来自全球 22 家 IVF 诊所的 181,428 个胚胎。为了区分具有已知结局的移植胚胎,我们展示了转移日分别为 0.621 到 0.707 的接收者操作曲线下面积。预测性能随时间推移而提高,并与形态动力学参数有很强的相关性。该模型在第 3 天胚胎上的性能与 KIDScore D3 模型相当,而在第 5 天及以上胚胎上的性能明显优于 KIDScore D5 v3 模型。该模型提供了一种无需用户输入的时差序列分析方法,并为卵裂期和囊胚期胚胎的着床可能性提供了一种可靠的排序方法。与传统的胚胎评估方法相比,这大大提高了胚胎分级的一致性并节省了时间。