Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, 46022, Spain; IVI-RMA Valencia, Spain.
IVI-RMA Valencia, Spain.
Comput Methods Programs Biomed. 2022 Jun;221:106895. doi: 10.1016/j.cmpb.2022.106895. Epub 2022 May 16.
Embryo morphology is a predictive marker for implantation success and ultimately live births. Viability evaluation and quality grading are commonly used to select the embryo with the highest implantation potential. However, the traditional method of manual embryo assessment is time-consuming and highly susceptible to inter- and intra-observer variability. Automation of this process results in more objective and accurate predictions.
In this paper, we propose a novel methodology based on deep learning to automatically evaluate the morphological appearance of human embryos from time-lapse imaging. A supervised contrastive learning framework is implemented to predict embryo viability at day 4 and day 5, and an inductive transfer approach is applied to classify embryo quality at both times.
Results showed that both methods outperformed conventional approaches and improved state-of-the-art embryology results for an independent test set. The viability result achieved an accuracy of 0.8103 and 0.9330 and the quality results reached values of 0.7500 and 0.8001 for day 4 and day 5, respectively. Furthermore, qualitative results kept consistency with the clinical interpretation.
The proposed methods are up to date with the artificial intelligence literature and have been proven to be promising. Furthermore, our findings represent a breakthrough in the field of embryology in that they study the possibilities of embryo selection at day 4. Moreover, the grad-CAMs findings are directly in line with embryologists' decisions. Finally, our results demonstrated excellent potential for the inclusion of the models in clinical practice.
胚胎形态是预测着床成功和最终活产的指标。胚胎的活力评估和质量分级通常用于选择具有最高着床潜能的胚胎。然而,传统的手动胚胎评估方法既耗时又容易受到观察者间和观察者内变异性的影响。自动化处理可以实现更客观、准确的预测。
本文提出了一种基于深度学习的新方法,用于从延时成像中自动评估人类胚胎的形态外观。采用监督对比学习框架预测第 4 天和第 5 天的胚胎活力,并应用归纳转移方法对两个时间点的胚胎质量进行分类。
结果表明,这两种方法均优于传统方法,且在独立测试集上提高了胚胎学的最新技术水平。活力预测的准确率分别达到 0.8103 和 0.9330,质量预测的准确率分别达到 0.7500 和 0.8001。此外,定性结果与临床解释一致。
所提出的方法与人工智能文献相符,并已被证明具有广阔的应用前景。此外,我们的研究结果代表了胚胎学领域的一个突破,因为它们研究了在第 4 天选择胚胎的可能性。此外,grad-CAMs 的结果与胚胎学家的决策直接一致。最后,我们的结果表明,这些模型在临床实践中的应用具有巨大的潜力。