Center for Functional Protein Assemblies & Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany.
TUM Catalysis Research Center, Technical University of Munich (TUM), 85748 Garching, Germany.
J Am Chem Soc. 2024 Sep 25;146(38):25976-25985. doi: 10.1021/jacs.4c04618. Epub 2024 Aug 8.
Cerium photoredox catalysis has emerged as a powerful strategy to activate molecules under mild conditions. Radical intermediates are formed using visible light and simple complexes of the earth-abundant lanthanide. Here, we report an artificial photoenzyme enabling this chemistry inside a protein. We utilize a de novo designed protein scaffold that tightly binds lanthanide ions in its central cavity. Upon visible-light irradiation, the cerium-dependent enzyme catalyzes the radical C-C bond cleavage of 1,2-diols in aqueous solution. Protein engineering led to variants with improved photostability and metal binding behavior. The photoenzyme cleaves a range of aromatic and aliphatic substrates, including lignin surrogates. Surface display of the protein scaffold on facilitates whole-cell photobiocatalysis. Furthermore, we show that also natural lanthanide-binding proteins are suitable for this approach. Our study thus demonstrates a new-to-nature enzymatic photoredox activity with broad catalytic potential.
铈光氧化还原催化已成为在温和条件下激活分子的一种强大策略。使用可见光和丰富的镧系元素的简单配合物形成自由基中间体。在这里,我们报告了一种在蛋白质内部实现这种化学的人工光酶。我们利用一种从头设计的蛋白质支架,将镧系元素离子紧密地结合在其中心腔中。在可见光照射下,依赖铈的酶催化水溶液中 1,2-二醇的自由基 C-C 键断裂。蛋白质工程导致具有改进的光稳定性和金属结合行为的变体。该光酶可切割一系列芳香族和脂肪族底物,包括木质素替代品。在 上展示蛋白质支架的表面有助于全细胞光生物催化。此外,我们还表明,天然的镧系元素结合蛋白也适用于这种方法。因此,我们的研究证明了具有广泛催化潜力的新型自然酶光氧化还原活性。