Beil Sebastian B, Bonnet Sylvestre, Casadevall Carla, Detz Remko J, Eisenreich Fabian, Glover Starla D, Kerzig Christoph, Næsborg Line, Pullen Sonja, Storch Golo, Wei Ning, Zeymer Cathleen
Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands.
Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany.
JACS Au. 2024 Aug 8;4(8):2746-2766. doi: 10.1021/jacsau.4c00527. eCollection 2024 Aug 26.
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
光催化是一个用途广泛且发展迅速的领域,其应用涵盖人工光合作用、光生物催化、溶液或超分子结构中的光氧化还原催化、丰富金属和有机催化剂的利用、可持续合成以及塑料降解。在这篇展望文章中,我们总结了2023年3月在莱顿洛伦兹中心举行的一次青年首席研究员跨学科研讨会的结论。我们探讨了光催化领域内不同学科如何相互受益。我们深入研究这些子学科之间复杂的相互作用,强调每个领域所呈现的独特挑战和机遇,以及多学科方法如何推动创新并为未来带来可持续的解决方案。这些领域之间先进的合作和知识交流可以进一步提升光催化的潜力。例如,人工光合作用已成为一种有前景的太阳能燃料生产技术,可通过水分解或二氧化碳还原实现,而光催化已经彻底改变了我们对组装分子构件的思考方式。融合这些强大的学科可能会产生适用于不同技术的高效且可持续的方案。虽然光催化已经成熟并可应用于工业过程,但深入理解复杂的机制对于提高反应量子产率和维持持续发展至关重要。光催化在分子和材料的合成、解构及再利用方面处于理想位置,对实现可持续未来具有重要意义。为了充分发挥光催化的潜力,有必要从根本上理解不同子领域内的基础过程,以便最有效地实现使用和再利用的循环。继2023年洛伦兹中心研讨会的初步互动之后,我们旨在激发讨论并采用跨学科方法,以应对未来不同团队面临的这些挑战。