Suppr超能文献

一目了然的水果:一个基于深度学习的框架,用于使用水果和叶子图像预测次生代谢物类别。

Fruit-In-Sight: A deep learning-based framework for secondary metabolite class prediction using fruit and leaf images.

作者信息

Krishnan Neeraja M, Kumar Saroj, Panda Binay

机构信息

School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.

Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.

出版信息

PLoS One. 2024 Aug 8;19(8):e0308708. doi: 10.1371/journal.pone.0308708. eCollection 2024.

Abstract

Fruits produce a wide variety of secondary metabolites of great economic value. Analytical measurement of the metabolites is tedious, time-consuming, and expensive. Additionally, metabolite concentrations vary greatly from tree to tree, making it difficult to choose trees for fruit collection. The current study tested whether deep learning-based models can be developed using fruit and leaf images alone to predict a metabolite's concentration class (high or low). We collected fruits and leaves (n = 1045) from neem trees grown in the wild across 0.6 million sq km, imaged them, and measured concentration of five metabolites (azadirachtin, deacetyl-salannin, salannin, nimbin and nimbolide) using high-performance liquid chromatography. We used the data to train deep learning models for metabolite class prediction. The best model out of the seven tested (YOLOv5, GoogLeNet, InceptionNet, EfficientNet_B0, Resnext_50, Resnet18, and SqueezeNet) provided a validation F1 score of 0.93 and a test F1 score of 0.88. The sensitivity and specificity of the fruit model alone in the test set were 83.52 ± 6.19 and 82.35 ± 5.96, and 79.40 ± 8.50 and 85.64 ± 6.21, for the low and the high classes, respectively. The sensitivity was further boosted to 92.67± 5.25 for the low class and 88.11 ± 9.17 for the high class, and the specificity to 100% for both classes, using a multi-analyte framework. We incorporated the multi-analyte model in an Android mobile App Fruit-In-Sight that uses fruit and leaf images to decide whether to 'pick' or 'not pick' the fruits from a specific tree based on the metabolite concentration class. Our study provides evidence that images of fruits and leaves alone can predict the concentration class of a secondary metabolite without using expensive laboratory equipment and cumbersome analytical procedures, thus simplifying the process of choosing the right tree for fruit collection.

摘要

水果会产生多种具有重大经济价值的次生代谢产物。对这些代谢产物进行分析测量既繁琐、耗时又昂贵。此外,不同树木之间代谢产物的浓度差异很大,这使得选择用于果实采集的树木变得困难。当前的研究测试了是否可以仅使用果实和叶片图像开发基于深度学习的模型,以预测代谢产物的浓度类别(高或低)。我们从跨越60万平方公里的野生印楝树上收集了果实和树叶(n = 1045),对它们进行成像,并使用高效液相色谱法测量了五种代谢产物(印楝素、脱乙酰印楝素、印楝苦素、尼姆宾和尼姆醇)的浓度。我们使用这些数据训练用于代谢产物类别预测的深度学习模型。在测试的七个模型(YOLOv5、GoogLeNet、InceptionNet、EfficientNet_B0、Resnext_50、Resnet18和SqueezeNet)中,最佳模型的验证F1分数为0.93,测试F1分数为0.88。在测试集中,仅果实模型对于低浓度类别和高浓度类别的灵敏度和特异性分别为83.52±6.19和82.35±5.96,以及79.40±8.50和85.64±6.21。使用多分析物框架时,低浓度类别的灵敏度进一步提高到92.67±5.25,高浓度类别的灵敏度提高到88.11±9.17,两个类别的特异性均提高到100%。我们将多分析物模型整合到一个安卓移动应用程序Fruit-In-Sight中,该应用程序使用果实和叶片图像,根据代谢产物浓度类别来决定是否从特定树木上“采摘”果实。我们的研究提供了证据,表明仅果实和叶片图像就可以预测次生代谢产物的浓度类别,而无需使用昂贵的实验室设备和繁琐的分析程序,从而简化了选择合适树木进行果实采集的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验