文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习识别城市卫生系统中感染艾滋病毒风险患者

Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System.

作者信息

Nethi Arun Kumar, Karam Albert George, Alvarez Kristin S, Luque Amneris Esther, Nijhawan Ank E, Adhikari Emily, King Helen Lynne

机构信息

PCCI, Dallas, TX.

Center of Innovation and Value at Parkland Health, Dallas, TX.

出版信息

J Acquir Immune Defic Syndr. 2024 Sep 1;97(1):40-47. doi: 10.1097/QAI.0000000000003464.


DOI:10.1097/QAI.0000000000003464
PMID:39116330
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11315401/
Abstract

BACKGROUND: Effective measures exist to prevent the spread of HIV. However, the identification of patients who are candidates for these measures can be a challenge. A machine learning model to predict risk for HIV may enhance patient selection for proactive outreach. SETTING: Using data from the electronic health record at Parkland Health, 1 of the largest public healthcare systems in the country, a machine learning model is created to predict incident HIV cases. The study cohort includes any patient aged 16 or older from 2015 to 2019 (n = 458,893). METHODS: Implementing a 70:30 ratio random split of the data into training and validation sets with an incident rate <0.08% and stratified by incidence of HIV, the model is evaluated using a k-fold cross-validated (k = 5) area under the receiver operating characteristic curve leveraging Light Gradient Boosting Machine Algorithm, an ensemble classifier. RESULTS: The light gradient boosting machine produces the strongest predictive power to identify good candidates for HIV PrEP. A gradient boosting classifier produced the best result with an AUC of 0.88 (95% confidence interval: 0.86 to 0.89) on the training set and 0.85 (95% confidence interval: 0.81 to 0.89) on the validation set for a sensitivity of 77.8% and specificity of 75.1%. CONCLUSIONS: A gradient boosting model using electronic health record data can be used to identify patients at risk of acquiring HIV and implemented in the clinical setting to build outreach for preventative interventions.

摘要

背景:存在有效的措施来预防艾滋病毒的传播。然而,识别适合采取这些措施的患者可能具有挑战性。一种预测艾滋病毒风险的机器学习模型可能会增强对患者进行主动干预的筛选。 背景:利用美国最大的公共医疗系统之一帕克兰健康中心电子健康记录中的数据,创建了一个机器学习模型来预测艾滋病毒感染病例。研究队列包括2015年至2019年期间年龄在16岁及以上的任何患者(n = 458,893)。 方法:将数据按70:30的比例随机分为训练集和验证集,感染率<0.08%,并按艾滋病毒感染率分层,使用k折交叉验证(k = 5)的受试者操作特征曲线下面积,利用轻梯度提升机算法(一种集成分类器)对模型进行评估。 结果:轻梯度提升机在识别艾滋病毒暴露前预防的合适人选方面具有最强的预测能力。梯度提升分类器在训练集上的AUC为0.88(95%置信区间:0.86至0.89),在验证集上的AUC为0.85(95%置信区间:0.81至0.89),敏感性为77.8%,特异性为75.1%,产生了最佳结果。 结论:使用电子健康记录数据的梯度提升模型可用于识别有感染艾滋病毒风险的患者,并在临床环境中实施,以开展预防干预的外联工作。

相似文献

[1]
Using Machine Learning to Identify Patients at Risk of Acquiring HIV in an Urban Health System.

J Acquir Immune Defic Syndr. 2024-9-1

[2]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[3]
Development and validation of an automated HIV prediction algorithm to identify candidates for pre-exposure prophylaxis: a modelling study.

Lancet HIV. 2019-7-5

[4]
Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.

Lancet HIV. 2019-7-5

[5]
Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.

JAMA Netw Open. 2018-8-3

[6]
Development of a Human Immunodeficiency Virus Risk Prediction Model Using Electronic Health Record Data From an Academic Health System in the Southern United States.

Clin Infect Dis. 2023-1-13

[7]
Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.

J Med Internet Res. 2020-11-6

[8]
Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.

PLoS Med. 2018-11-20

[9]
Using electronic health records to identify candidates for human immunodeficiency virus pre-exposure prophylaxis: An application of super learning to risk prediction when the outcome is rare.

Stat Med. 2020-10-15

[10]
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.

BMC Public Health. 2024-6-28

引用本文的文献

[1]
Evaluating machine learning algorithms for predicting HIV status among young Thai men who have sex with men.

BMJ Health Care Inform. 2025-5-15

[2]
Association of an HIV-Prediction Model with Uptake of Preexposure Prophylaxis.

Appl Clin Inform. 2025-5

本文引用的文献

[1]
Generalizable pipeline for constructing HIV risk prediction models across electronic health record systems.

J Am Med Inform Assoc. 2024-2-16

[2]
Development of a predictive model for identifying women vulnerable to HIV in Chicago.

BMC Womens Health. 2023-6-16

[3]
Insufficient PrEParation: an assessment of primary care prescribing habits and use of pre-exposure prophylaxis in patients at risk of HIV acquisition at a single medical centre.

Sex Transm Infect. 2023-6

[4]
Development of a Human Immunodeficiency Virus Risk Prediction Model Using Electronic Health Record Data From an Academic Health System in the Southern United States.

Clin Infect Dis. 2023-1-13

[5]
Parkland Trauma Index of Mortality: Real-Time Predictive Model for Trauma Patients.

J Orthop Trauma. 2022-6-1

[6]
Primary Care Providers' Perspectives on Using Automated HIV Risk Prediction Models to Identify Potential Candidates for Pre-exposure Prophylaxis.

AIDS Behav. 2021-11

[7]
Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.

J Transl Med. 2020-12-7

[8]
Health Care Provider Barriers to HIV Pre-Exposure Prophylaxis in the United States: A Systematic Review.

AIDS Patient Care STDS. 2020-2-28

[9]
Algorithmic prediction of HIV status using nation-wide electronic registry data.

EClinicalMedicine. 2019-11-5

[10]
Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study.

Lancet HIV. 2019-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索