Suppr超能文献

新型 4-氯苯氧乙酸双加氧酶介导的杯状菌 DL-D2 对苯氧烷酸类除草剂的初始代谢。

Novel 4-chlorophenoxyacetate dioxygenase-mediated phenoxyalkanoic acid herbicides initial catabolism in Cupriavidus sp. DL-D2.

机构信息

The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Anhui Normal University, Wuhu 241000, Anhui, PR China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, PR China.

College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, PR China.

出版信息

J Hazard Mater. 2024 Oct 5;478:135427. doi: 10.1016/j.jhazmat.2024.135427. Epub 2024 Aug 5.

Abstract

Microbial metabolism is an important driving force for the elimination of 4-chlorophenoxyacetic acid residues in the environment. The α-Ketoglutarate-dependent dioxygenase (TfdA) or 2,4-D oxygenase (CadAB) catalyzes the cleavage of the aryl ether bond of 4-chlorophenoxyacetic acid to 4-chlorophenol, which is one of the important pathways for the initial metabolism of 4-chlorophenoxyacetic acid by microorganisms. However, strain Cupriavidus sp. DL-D2 could utilize 4-chlorophenoxyacetic acid but not 4-chlorophenol for growth. This scarcely studied degradation pathway may involve novel enzymes that has not yet been characterized. Here, a gene cluster (designated cpd) responsible for the catabolism of 4-chlorophenoxyacetic acid in strain DL-D2 was cloned and identified, and the dioxygenase CpdA/CpdB responsible for the initial degradation of 4-chlorophenoxyacetic acid was successfully expressed, which could catalyze the conversion of 4-chlorphenoxyacetic acid to 4-chlorocatechol. Then, an aromatic cleavage enzyme CpdC further converts 4-chlorocatechol into 3-chloromuconate. The results of substrate degradation experiments showed that CpdA/CpdB could also degrade 3-chlorophenoxyacetic acid and phenoxyacetic acid, and homologous cpd gene clusters were widely discovered in microbial genomes. Our findings revealed a novel degradation mechanism of 4-chlorophenoxyacetic acid at the molecular level.

摘要

微生物代谢是环境中消除 4-氯苯氧乙酸残留的重要驱动力。α-酮戊二酸依赖性双加氧酶(TfdA)或 2,4-D 加氧酶(CadAB)催化 4-氯苯氧乙酸芳基醚键的裂解,生成 4-氯苯酚,这是微生物初始代谢 4-氯苯氧乙酸的重要途径之一。然而,菌株 Cupriavidus sp. DL-D2 可以利用 4-氯苯氧乙酸而不是 4-氯苯酚进行生长。这个研究甚少的降解途径可能涉及尚未被表征的新型酶。在这里,我们克隆并鉴定了负责菌株 DL-D2 中 4-氯苯氧乙酸代谢的基因簇(命名为 cpd),并成功表达了负责 4-氯苯氧乙酸初始降解的双加氧酶 CpdA/CpdB,该酶可以催化 4-氯苯氧乙酸转化为 4-氯邻苯二酚。然后,芳香族裂解酶 CpdC 进一步将 4-氯邻苯二酚转化为 3-氯粘康酸。底物降解实验结果表明,CpdA/CpdB 还可以降解 3-氯苯氧乙酸和苯氧乙酸,并且在微生物基因组中广泛发现了同源的 cpd 基因簇。我们的研究结果从分子水平揭示了 4-氯苯氧乙酸的一种新的降解机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验