Department of Biology, Stanford University, Stanford, CA, USA.
Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
Nat Ecol Evol. 2024 Sep;8(9):1641-1653. doi: 10.1038/s41559-024-02481-x. Epub 2024 Aug 8.
Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.
解析植物对环境的响应是理解植物是否以及如何适应人为气候变化的关键。随着 CO2 浓度的升高,植物进行气体交换的气孔预计会减少,这一趋势已经在多种植物物种中观察到。然而,目前尚不清楚这种响应是否基于遗传变化和进化适应。在这里,我们利用了对气孔发育途径中 43 个基因的广泛了解,以及新生成的 191 份拟南芥历史标本的基因组信息,这些标本是在 193 年期间收集的,以直接将遗传变异与气候变化联系起来。虽然我们发现气孔发育的关键转录因子 SPCH、MUTE 和 FAMA 受到强烈的进化约束,但几个气孔发育调节剂在来自不同地理区域的当代样本中表现出局部适应的迹象。然后,我们基于基因敲除对气孔发育的已知影响开发了一个功能评分,该评分恢复了过去几个世纪气孔密度下降的经典模式,这表明遗传因素对此变化有一定的贡献。这种将历史基因组学与功能实验知识相结合的方法,可以进一步研究即使在历史样本中无法测量的不同的、甚至是细胞植物表型,如何已经通过适应性进化对气候变化做出了响应。