Department of Internal Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.
Department of Biostatistics and Medical Informatics, Istanbul Medeniyet University, Istanbul, Türkiye.
Front Endocrinol (Lausanne). 2024 Jul 10;15:1411678. doi: 10.3389/fendo.2024.1411678. eCollection 2024.
Waist circumference (WC) is a reliable obesity surrogate but may not distinguish between visceral and subcutaneous adipose tissue. Our aim was to develop a novel sex-specific model to estimate the magnitude of visceral adipose tissue measured by computed tomography (CT-VAT).
The model was initially formulated through the integration of anthropometric measurements, laboratory data, and CT-VAT within a study group (n=185), utilizing the Multivariate Adaptive Regression Splines (MARS) methodology. Subsequently, its correlation with CT-VAT was examined in an external validation group (n=50). The accuracy of the new model in estimating increased CT-VAT (>130 cm) was compared with WC, body mass index (BMI), waist-hip ratio (WHR), visceral adiposity index (VAI), a body shape index (ABSI), lipid accumulation product (LAP), body roundness index (BRI), and metabolic score for visceral fat (METS-VF) in the study group. Additionally, the new model's accuracy in identifying metabolic syndrome was evaluated in our Metabolic Healthiness Discovery Cohort (n=430).
The new model comprised WC, gender, BMI, and hip circumference, providing the highest predictive accuracy in estimating increased CT-VAT in men (AUC of 0.96 ± 0.02), outperforming other indices. In women, the AUC was 0.94 ± 0.03, which was significantly higher than that of VAI, WHR, and ABSI but similar to WC, BMI, LAP, BRI, and METS-VF. It's demonstrated high ability for identifying metabolic syndrome with an AUC of 0.76 ± 0.03 (p<0.001).
The new model is a valuable indicator of CT-VAT, especially in men, and it exhibits a strong predictive capability for identifying metabolic syndrome.
腰围(WC)是一种可靠的肥胖替代指标,但可能无法区分内脏和皮下脂肪组织。我们的目的是开发一种新的性别特异性模型来估计 CT 测量的内脏脂肪组织的程度(CT-VAT)。
该模型最初是通过在研究组(n=185)中整合人体测量学测量、实验室数据和 CT-VAT 利用多元自适应回归样条(MARS)方法制定的。随后,在外部验证组(n=50)中检查了其与 CT-VAT 的相关性。在研究组中,比较了新模型在估计增加的 CT-VAT(>130cm)方面的准确性与 WC、体重指数(BMI)、腰围-臀围比(WHR)、内脏脂肪指数(VAI)、身体形状指数(ABSI)、脂肪堆积产物(LAP)、身体圆润指数(BRI)和内脏脂肪代谢评分(METS-VF)。此外,还在我们的代谢健康发现队列(n=430)中评估了新模型在识别代谢综合征方面的准确性。
新模型由 WC、性别、BMI 和臀围组成,在男性中提供了最高的预测准确性,用于估计增加的 CT-VAT(AUC 为 0.96±0.02),优于其他指数。在女性中,AUC 为 0.94±0.03,明显高于 VAI、WHR 和 ABSI,但与 WC、BMI、LAP、BRI 和 METS-VF 相似。它具有识别代谢综合征的高能力,AUC 为 0.76±0.03(p<0.001)。
新模型是 CT-VAT 的一个有价值的指标,尤其是在男性中,并且具有很强的预测能力来识别代谢综合征。