Suppr超能文献

基于简单临床测量的新模型预测内脏脂肪组织量。

Prediction of visceral adipose tissue magnitude using a new model based on simple clinical measurements.

机构信息

Department of Internal Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.

Department of Biostatistics and Medical Informatics, Istanbul Medeniyet University, Istanbul, Türkiye.

出版信息

Front Endocrinol (Lausanne). 2024 Jul 10;15:1411678. doi: 10.3389/fendo.2024.1411678. eCollection 2024.

Abstract

AIMS

Waist circumference (WC) is a reliable obesity surrogate but may not distinguish between visceral and subcutaneous adipose tissue. Our aim was to develop a novel sex-specific model to estimate the magnitude of visceral adipose tissue measured by computed tomography (CT-VAT).

METHODS

The model was initially formulated through the integration of anthropometric measurements, laboratory data, and CT-VAT within a study group (n=185), utilizing the Multivariate Adaptive Regression Splines (MARS) methodology. Subsequently, its correlation with CT-VAT was examined in an external validation group (n=50). The accuracy of the new model in estimating increased CT-VAT (>130 cm) was compared with WC, body mass index (BMI), waist-hip ratio (WHR), visceral adiposity index (VAI), a body shape index (ABSI), lipid accumulation product (LAP), body roundness index (BRI), and metabolic score for visceral fat (METS-VF) in the study group. Additionally, the new model's accuracy in identifying metabolic syndrome was evaluated in our Metabolic Healthiness Discovery Cohort (n=430).

RESULTS

The new model comprised WC, gender, BMI, and hip circumference, providing the highest predictive accuracy in estimating increased CT-VAT in men (AUC of 0.96 ± 0.02), outperforming other indices. In women, the AUC was 0.94 ± 0.03, which was significantly higher than that of VAI, WHR, and ABSI but similar to WC, BMI, LAP, BRI, and METS-VF. It's demonstrated high ability for identifying metabolic syndrome with an AUC of 0.76 ± 0.03 (p<0.001).

CONCLUSION

The new model is a valuable indicator of CT-VAT, especially in men, and it exhibits a strong predictive capability for identifying metabolic syndrome.

摘要

目的

腰围(WC)是一种可靠的肥胖替代指标,但可能无法区分内脏和皮下脂肪组织。我们的目的是开发一种新的性别特异性模型来估计 CT 测量的内脏脂肪组织的程度(CT-VAT)。

方法

该模型最初是通过在研究组(n=185)中整合人体测量学测量、实验室数据和 CT-VAT 利用多元自适应回归样条(MARS)方法制定的。随后,在外部验证组(n=50)中检查了其与 CT-VAT 的相关性。在研究组中,比较了新模型在估计增加的 CT-VAT(>130cm)方面的准确性与 WC、体重指数(BMI)、腰围-臀围比(WHR)、内脏脂肪指数(VAI)、身体形状指数(ABSI)、脂肪堆积产物(LAP)、身体圆润指数(BRI)和内脏脂肪代谢评分(METS-VF)。此外,还在我们的代谢健康发现队列(n=430)中评估了新模型在识别代谢综合征方面的准确性。

结果

新模型由 WC、性别、BMI 和臀围组成,在男性中提供了最高的预测准确性,用于估计增加的 CT-VAT(AUC 为 0.96±0.02),优于其他指数。在女性中,AUC 为 0.94±0.03,明显高于 VAI、WHR 和 ABSI,但与 WC、BMI、LAP、BRI 和 METS-VF 相似。它具有识别代谢综合征的高能力,AUC 为 0.76±0.03(p<0.001)。

结论

新模型是 CT-VAT 的一个有价值的指标,尤其是在男性中,并且具有很强的预测能力来识别代谢综合征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfb/11307439/52fed67c0e0e/fendo-15-1411678-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验