Suppr超能文献

一种基于集成学习的含高吸水性聚合物(SAP)混凝土抗压强度退化预测模型。

An ensemble learning-based prediction model for the compressive strength degradation of concrete containing superabsorbent polymers (SAP).

作者信息

Hosseinzadeh Maedeh, Mousavi Seyed Sina, Dehestani Mehdi

机构信息

Faculty of Civil Engineering, Babol Noshirvani University of Technology, Postal Box: 484, Babol, 47148-71167, Iran.

出版信息

Sci Rep. 2024 Aug 9;14(1):18535. doi: 10.1038/s41598-024-68276-z.

Abstract

Super absorbent polymer (SAP) has a capacity to enhance the characteristics of cementitious composites in both their fresh and hardened forms. However, it is essential to recognize that the strength of SAP concrete may decrease. By altering the concrete composition and selecting the appropriate type of SAP, it is possible to reduce this reduction. This work employs machine learning (ML) to tackle the issue of strength degradation. The analysis considers ten distinct variables linked to concrete composition and the type of SAP. The study uses machine learning approaches that involve both regression and classification tasks. The use of ensemble learning greatly improves the quality and accuracy of the results, showing its superiority in combining several models to produce more precise predictions. The findings demonstrate that the Support Vector Machines (SVM) and Extreme Gradient Boosting (XGBoost) regression algorithms accurately forecasted the percentage of reduction in strength in SAP concrete. These predictions were based on the concrete composition and SAP details, resulting in R2 values of 0.90 and 0.88, respectively. Furthermore, XGBoost exhibited the highest accuracy, reaching 0.94, when compared to the various categorization algorithms. According to the results, the mean squared error (MSE) of the ensemble model demonstrated superior outcomes. Furthermore, the SHapley Additive exPlanations (SHAP) reveal that some variables, including SAP%, SAP size, and compressive strength, have a significant influence on the strength reduction model. This study aims to bridge the gap between academic research and practical application by developing a web application that employs ensemble learning to precisely forecast the reduction in compressive strength caused by the usage of SAP.

摘要

高吸水性聚合物(SAP)能够增强水泥基复合材料在新拌状态和硬化状态下的性能。然而,必须认识到SAP混凝土的强度可能会降低。通过改变混凝土组成并选择合适类型的SAP,可以减少这种强度降低。这项工作采用机器学习(ML)来解决强度退化问题。分析考虑了与混凝土组成和SAP类型相关的十个不同变量。该研究使用了涉及回归和分类任务的机器学习方法。集成学习的使用大大提高了结果的质量和准确性,显示出其在组合多个模型以产生更精确预测方面的优越性。研究结果表明,支持向量机(SVM)和极端梯度提升(XGBoost)回归算法准确预测了SAP混凝土强度降低的百分比。这些预测基于混凝土组成和SAP细节,R2值分别为0.90和0.88。此外,与各种分类算法相比,XGBoost的准确率最高,达到0.94。根据结果,集成模型的均方误差(MSE)显示出更好的结果。此外,SHapley加性解释(SHAP)表明,包括SAP含量、SAP尺寸和抗压强度在内的一些变量对强度降低模型有显著影响。本研究旨在通过开发一个网络应用程序来弥合学术研究与实际应用之间的差距,该应用程序采用集成学习来精确预测使用SAP导致的抗压强度降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a74/11315962/0adca1af06cd/41598_2024_68276_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验