Suppr超能文献

预测混凝土性能的数值和机器学习方法综述:从新拌状态到长期性能

A Comprehensive Review of Numerical and Machine Learning Approaches for Predicting Concrete Properties: From Fresh to Long-Term.

作者信息

Adsul Nilam, Choi Yongho, Kang Su-Tae

机构信息

Department of Civil Engineering, Daegu University, Gyeongsan 38453, Republic of Korea.

Faculty of Department of Computer & Information Engineering (Cyber Security), Daegu University, Gyeongsan 38453, Republic of Korea.

出版信息

Materials (Basel). 2025 Aug 7;18(15):3718. doi: 10.3390/ma18153718.

Abstract

The growing demand for innovation and the use of diverse materials in cementitious composites necessitate predictive models that account for material variability. Numerical, code-based, and machine learning (ML) models have been developed to predict various concrete properties. However, their accuracy is significantly influenced by factors such as mix design, composition, intrinsic properties, and external conditions. Developing robust models that integrate these variables is essential for improving predictive accuracy and optimizing material performance. This paper presents a comprehensive review of numerical, code-based, and ML modelling techniques for predicting both fresh and long-term concrete properties. Since both numerical and ML models rely on experimental data-either to determine coefficients in numerical approaches or to train ML models-data gathering, preprocessing, and handling are crucial for model performance. Previous studies indicated that data variability significantly impacts accuracy, emphasizing the importance of effective preprocessing. While larger datasets generally improve reliability, some models achieve high accuracy even with very limited data. This review not only demonstrates the superior performance of ML models over traditional numerical approaches but also highlights the relative effectiveness of different ML algorithms based on reported accuracy metrics. ML-based approaches, including both ensemble and non-ensemble models, have exhibited strong predictive capabilities across a wide range of concrete property categories. In contrast, traditional numerical models often yield lower accuracy, although modified versions that incorporate additional parameters have shown improved performance. Furthermore, the integration of optimization algorithms and interpretability tools enhances both predictive reliability and model transparency-critical aspects that are often overlooked.

摘要

对创新以及在水泥基复合材料中使用多种材料的需求不断增长,这就需要能够考虑材料变异性的预测模型。已经开发了数值模型、基于规范的模型和机器学习(ML)模型来预测各种混凝土性能。然而,它们的准确性会受到诸如配合比设计、成分、固有特性和外部条件等因素的显著影响。开发整合这些变量的稳健模型对于提高预测准确性和优化材料性能至关重要。本文对用于预测新拌混凝土和长期混凝土性能的数值模型、基于规范的模型和ML建模技术进行了全面综述。由于数值模型和ML模型都依赖实验数据——要么用于确定数值方法中的系数,要么用于训练ML模型——数据收集、预处理和处理对于模型性能至关重要。先前的研究表明,数据变异性会显著影响准确性,这强调了有效预处理的重要性。虽然更大的数据集通常会提高可靠性,但一些模型即使在数据非常有限的情况下也能达到高精度。本综述不仅展示了ML模型相对于传统数值方法的卓越性能,还基于报告的准确性指标突出了不同ML算法的相对有效性。基于ML的方法,包括集成模型和非集成模型,在广泛的混凝土性能类别中都表现出了强大的预测能力。相比之下,传统数值模型的准确性往往较低,尽管纳入了额外参数的改进版本表现有所提升。此外,优化算法和可解释性工具的整合提高了预测可靠性和模型透明度——这些关键方面常常被忽视。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b64/12348309/0e66def1b924/materials-18-03718-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验