Suppr超能文献

用于颅内出血检测的超参数调优深度学习驱动的医学图像分析

Hyperparameter tuned deep learning-driven medical image analysis for intracranial hemorrhage detection.

作者信息

Almakayeel Naif, Lydia E Laxmi, Razzhivin Oleg, Sree S Rama, Ahmed Mohammed Altaf, Dash Bibhuti Bhusan, Ibrahim S P Siddique

机构信息

Department of Industrial Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia.

Department of Computer Science and Engineering, Vignan's Institute of Engineering for Women, Visakhapatnam, AP, India.

出版信息

PLoS One. 2025 Jul 28;20(7):e0326255. doi: 10.1371/journal.pone.0326255. eCollection 2025.

Abstract

Intracranial haemorrhage (ICH) is a crucial medical emergency that entails prompt assessment and management. Compared to conventional clinical tests, the need for computerized medical assistance for properly recognizing brain haemorrhage from computer tomography (CT) scans is more mandatory. Various deep learning (DL) and artificial intelligence (AI) technologies have been successfully implemented for the analysis of medical images, namely grading of diabetic retinopathy (DR), breast cancer detection, skin cancer detection, and so on. Furthermore, the AI approach ensures accurate detection to facilitate early detection, drastically decreasing the mortality rate. Based on DL models, there are already various techniques for ICHdetection. This manuscript proposes the design of a Hyperparameter Tuned Deep Learning-Driven Medical Image Analysis for Intracranial Hemorrhage Detection (HPDL-MIAIHD) technique. The proposed HPDL-MIAIHD technique investigates the available CT images to classify and identify the ICH. In the presented HPDL-MIAIHD technique, the median filtering (MF) approach is utilized for the image preprocessing step. Next, the HPDL-MIAIHD approach uses an enhanced EfficientNet technique to extract feature vectors. To increase the efficiency of the EfficientNet method, the hyperparameter tuning process is performed by utilizing the chimp optimizer algorithm (COA) method. The ICH detection process is accomplished by the ensemble classification process, comprising long short-term memory (LSTM), stacked autoencoder (SAE), and bidirectional LSTM (Bi-LSTM) networks. Lastly, the Bayesian optimizer algorithm (BOA) is implemented for the hyperparameter selection of the DL technique. A comprehensive simulation was conducted on the benchmark CT image dataset to demonstrate the effectiveness of the HPDL-MIAIHD approach in detecting ICH. The performance validation of the HPDL-MIAIHD approach portrayed a superior accuracy value of 99.02% over other existing models.

摘要

颅内出血(ICH)是一种关键的医疗急症,需要及时评估和处理。与传统临床检查相比,利用计算机辅助从计算机断层扫描(CT)图像中准确识别脑内出血显得更为迫切。各种深度学习(DL)和人工智能(AI)技术已成功应用于医学图像分析,如糖尿病视网膜病变(DR)分级、乳腺癌检测、皮肤癌检测等。此外,AI方法可确保准确检测,便于早期发现,从而大幅降低死亡率。基于DL模型,已有多种用于ICH检测的技术。本文提出了一种用于颅内出血检测的超参数调优深度学习驱动医学图像分析(HPDL - MIAIHD)技术的设计。所提出的HPDL - MIAIHD技术通过研究可用的CT图像来分类和识别ICH。在所提出的HPDL - MIAIHD技术中,中值滤波(MF)方法用于图像预处理步骤。接下来,HPDL - MIAIHD方法使用增强的EfficientNet技术来提取特征向量。为提高EfficientNet方法的效率,利用黑猩猩优化算法(COA)进行超参数调优过程。ICH检测过程通过集成分类过程完成,该过程包括长短期记忆(LSTM)、堆叠自编码器(SAE)和双向LSTM(Bi - LSTM)网络。最后,采用贝叶斯优化算法(BOA)对DL技术进行超参数选择。在基准CT图像数据集上进行了全面仿真,以证明HPDL - MIAIHD方法在检测ICH方面的有效性。HPDL - MIAIHD方法的性能验证表明,其准确率高达99.02%,优于其他现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f97/12303355/8a337dc4bd91/pone.0326255.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验