Suppr超能文献

基于深度学习和叶绿素荧光成像的大豆幼苗盐胁迫精准检测

Precision Detection of Salt Stress in Soybean Seedlings Based on Deep Learning and Chlorophyll Fluorescence Imaging.

作者信息

Deng Yixin, Xin Nan, Zhao Longgang, Shi Hongtao, Deng Limiao, Han Zhongzhi, Wu Guangxia

机构信息

College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China.

College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.

出版信息

Plants (Basel). 2024 Jul 27;13(15):2089. doi: 10.3390/plants13152089.

Abstract

Soil salinization poses a critical challenge to global food security, impacting plant growth, development, and crop yield. This study investigates the efficacy of deep learning techniques alongside chlorophyll fluorescence (ChlF) imaging technology for discerning varying levels of salt stress in soybean seedlings. Traditional methods for stress identification in plants are often laborious and time-intensive, prompting the exploration of more efficient approaches. A total of six classic convolutional neural network (CNN) models-AlexNet, GoogLeNet, ResNet50, ShuffleNet, SqueezeNet, and MobileNetv2-are evaluated for salt stress recognition based on three types of ChlF images. Results indicate that ResNet50 outperforms other models in classifying salt stress levels across three types of ChlF images. Furthermore, feature fusion after extracting three types of ChlF image features in the average pooling layer of ResNet50 significantly enhanced classification accuracy, achieving the highest accuracy of 98.61% in particular when fusing features from three types of ChlF images. UMAP dimensionality reduction analysis confirms the discriminative power of fused features in distinguishing salt stress levels. These findings underscore the efficacy of deep learning and ChlF imaging technologies in elucidating plant responses to salt stress, offering insights for precision agriculture and crop management. Overall, this study demonstrates the potential of integrating deep learning with ChlF imaging for precise and efficient crop stress detection, offering a robust tool for advancing precision agriculture. The findings contribute to enhancing agricultural sustainability and addressing global food security challenges by enabling more effective crop stress management.

摘要

土壤盐渍化对全球粮食安全构成了严峻挑战,影响植物生长、发育和作物产量。本研究探讨了深度学习技术与叶绿素荧光(ChlF)成像技术相结合,用于识别大豆幼苗不同程度盐胁迫的效果。传统的植物胁迫识别方法往往费力且耗时,因此促使人们探索更高效的方法。基于三种类型的ChlF图像,对六种经典卷积神经网络(CNN)模型——AlexNet、GoogLeNet、ResNet50、ShuffleNet、SqueezeNet和MobileNetv2进行了盐胁迫识别评估。结果表明,在对三种类型的ChlF图像进行盐胁迫水平分类时,ResNet50的表现优于其他模型。此外,在ResNet50的平均池化层中提取三种类型的ChlF图像特征后进行特征融合,显著提高了分类准确率,特别是在融合三种类型的ChlF图像特征时,准确率达到了98.61%的最高水平。UMAP降维分析证实了融合特征在区分盐胁迫水平方面的判别能力。这些发现强调了深度学习和ChlF成像技术在阐明植物对盐胁迫的反应方面的有效性,为精准农业和作物管理提供了见解。总体而言,本研究展示了将深度学习与ChlF成像相结合用于精确高效作物胁迫检测的潜力,为推进精准农业提供了一个强大的工具。这些发现有助于通过实现更有效的作物胁迫管理来提高农业可持续性并应对全球粮食安全挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ce/11314535/d8a041b181d7/plants-13-02089-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验