Suppr超能文献

多功能生物杂交磁铁微机器人用于成像引导治疗。

Multifunctional biohybrid magnetite microrobots for imaging-guided therapy.

机构信息

Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.

School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK.

出版信息

Sci Robot. 2017 Nov 22;2(12). doi: 10.1126/scirobotics.aaq1155.

Abstract

Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, biocompatibility, biodegradation, and diagnostic/therapeutic effects, need to be resolved to allow preclinical in vivo development and clinical trials. We report biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating. Helical microswimmers were fabricated from microalgae via a facile dip-coating process in magnetite (FeO) suspensions, superparamagnetic, and equipped with robust navigation capability in various biofluids. The innate properties of the microalgae allowed in vivo fluorescence imaging and remote diagnostic sensing without the need for any surface modification. Furthermore, in vivo magnetic resonance imaging tracked a swarm of microswimmers inside rodent stomachs, a deep organ where fluorescence-based imaging ceased to work because of its penetration limitation. Meanwhile, the microswimmers were able to degrade and exhibited selective cytotoxicity to cancer cell lines, subject to the thickness of the FeO coating, which could be tailored via the dip-coating process. The biohybrid microrobots reported herein represent a microrobotic platform that could be further developed for in vivo imaging-guided therapy and a proof of concept for the engineering of multifunctional microrobotic and nanorobotic devices.

摘要

磁性微机器人和纳米机器人可以通过磁场远程控制,在复杂的生物流体中进行高精度推进。它们在人体难以到达的腔体内进行受控导航的潜力,使它们成为有前途的微创机器人工具,可以以最小的侵入性方式诊断和治疗疾病。然而,需要解决关键问题,如运动跟踪、生物相容性、可生物降解性和诊断/治疗效果,以允许临床前体内开发和临床试验。我们报告了通过整合生物基质和工程涂层的所需结构和功能特性而赋予多功能能力的生物杂交磁机器人。通过在磁铁矿(FeO)悬浮液中进行简单的浸涂工艺,从微藻中制造出螺旋微游泳者,它们具有超顺磁性,并且在各种生物流体中具有强大的导航能力。微藻的固有特性允许进行体内荧光成像和远程诊断感应,而无需进行任何表面修饰。此外,体内磁共振成像可以跟踪一群微游泳者在啮齿动物胃内的运动,这是一个深部器官,由于其穿透限制,荧光成像不再有效。同时,微游泳者能够降解,并表现出对癌细胞系的选择性细胞毒性,这取决于 FeO 涂层的厚度,可以通过浸涂工艺进行调整。本文报道的生物杂交微机器人代表了一种微机器人平台,可以进一步开发用于体内成像引导治疗,并为多功能微机器人和纳米机器人设备的工程提供概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验