Department of Cell and Systems Biology, University of Toronto, Mississauga, ON, Canada.
Photosynth Res. 2011 Sep;109(1-3):7-20. doi: 10.1007/s11120-011-9656-y. Epub 2011 May 10.
Cyanobacteria (as well as many chemoautotrophs) actively pump inorganic carbon (in the form of HCO(3)(-)) into the cytosol in order to enhance the overall efficiency of carbon fixation. The success of this approach is dependent upon the presence of carboxysomes-large, polyhedral, cytosolic bodies which sequester ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and carbonic anhydrase. Carboxysomes seem to function by allowing ready passage of HCO(3)(-) into the body, but hindering the escape of evolved CO(2), promoting the accumulation of CO(2) in the vicinity of RubisCO and, consequently, efficient carbon fixation. This selectivity is mediated by a thin shell of protein, which envelops the carboxysome's enzymatic core and uses narrow pores to control the passage of small molecules. In this review, we summarize recent advances in understanding the organization and functioning of these intriguing, and ecologically very important molecular machines.
蓝细菌(以及许多化能自养生物)积极地将无机碳(以 HCO3-的形式)泵入细胞质,以提高碳固定的整体效率。这种方法的成功取决于羧基体的存在——大型多面细胞质体,其中包含核酮糖 1,5-二磷酸羧化酶/加氧酶(RubisCO)和碳酸酐酶。羧基体似乎通过允许 HCO3- 容易进入体内,但阻碍已进化的 CO2 的逸出,促进 CO2 在 RubisCO 附近的积累,从而促进有效的碳固定来发挥作用。这种选择性是由一层薄薄的蛋白质介导的,它包围着羧基体的酶核心,并利用狭窄的孔来控制小分子的通过。在这篇综述中,我们总结了最近在理解这些引人入胜且在生态上非常重要的分子机器的组织和功能方面的进展。