Suppr超能文献

DeepCMI:一种基于图的模型,用于准确预测具有多种信息的 circRNA-miRNA 相互作用。

DeepCMI: a graph-based model for accurate prediction of circRNA-miRNA interactions with multiple information.

机构信息

School of Information Engineering, Xijing University, Xi'an, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an, China.

出版信息

Brief Funct Genomics. 2024 May 15;23(3):276-285. doi: 10.1093/bfgp/elad030.

Abstract

Recently, the role of competing endogenous RNAs in regulating gene expression through the interaction of microRNAs has been closely associated with the expression of circular RNAs (circRNAs) in various biological processes such as reproduction and apoptosis. While the number of confirmed circRNA-miRNA interactions (CMIs) continues to increase, the conventional in vitro approaches for discovery are expensive, labor intensive, and time consuming. Therefore, there is an urgent need for effective prediction of potential CMIs through appropriate data modeling and prediction based on known information. In this study, we proposed a novel model, called DeepCMI, that utilizes multi-source information on circRNA/miRNA to predict potential CMIs. Comprehensive evaluations on the CMI-9905 and CMI-9589 datasets demonstrated that DeepCMI successfully infers potential CMIs. Specifically, DeepCMI achieved AUC values of 90.54% and 94.8% on the CMI-9905 and CMI-9589 datasets, respectively. These results suggest that DeepCMI is an effective model for predicting potential CMIs and has the potential to significantly reduce the need for downstream in vitro studies. To facilitate the use of our trained model and data, we have constructed a computational platform, which is available at http://120.77.11.78/DeepCMI/. The source code and datasets used in this work are available at https://github.com/LiYuechao1998/DeepCMI.

摘要

最近,竞争内源性 RNA 通过 microRNA 的相互作用调节基因表达的作用与环状 RNA(circRNA)在生殖和凋亡等各种生物过程中的表达密切相关。虽然已经确认的 circRNA-miRNA 相互作用(CMI)数量不断增加,但传统的体外发现方法昂贵、劳动强度大且耗时。因此,迫切需要通过适当的数据建模和基于已知信息的预测来有效预测潜在的 CMIs。在这项研究中,我们提出了一种名为 DeepCMI 的新模型,该模型利用 circRNA/miRNA 的多源信息来预测潜在的 CMIs。对 CMI-9905 和 CMI-9589 数据集的综合评估表明,DeepCMI 成功推断出了潜在的 CMIs。具体来说,DeepCMI 在 CMI-9905 和 CMI-9589 数据集上的 AUC 值分别达到 90.54%和 94.8%。这些结果表明,DeepCMI 是一种预测潜在 CMIs 的有效模型,有潜力显著减少对下游体外研究的需求。为了方便使用我们训练好的模型和数据,我们构建了一个计算平台,网址为 http://120.77.11.78/DeepCMI/。本工作中使用的源代码和数据集可在 https://github.com/LiYuechao1998/DeepCMI 上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验