Suppr超能文献

KS-CMI:一种基于带符号图神经网络和去噪自动编码器的环状RNA-微RNA相互作用预测方法。

KS-CMI: A circRNA-miRNA interaction prediction method based on the signed graph neural network and denoising autoencoder.

作者信息

Wang Xin-Fei, Yu Chang-Qing, You Zhu-Hong, Qiao Yan, Li Zheng-Wei, Huang Wen-Zhun, Zhou Ji-Ren, Jin Hai-Yan

机构信息

School of Information Engineering, Xijing University, Xi'an, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an, China.

出版信息

iScience. 2023 Jul 26;26(8):107478. doi: 10.1016/j.isci.2023.107478. eCollection 2023 Aug 18.

Abstract

Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and prognosis of human diseases. The discovery of potential circRNA-miRNA interactions (CMI) is of guiding significance for subsequent biological experiments. Limited by the small amount of experimentally supported data and high randomness, existing models are difficult to accomplish the CMI prediction task based on real cases. In this paper, we propose KS-CMI, a novel method for effectively accomplishing CMI prediction in real cases. KS-CMI enriches the 'behavior relationships' of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and extracts the behavior relationship attribute of molecules based on balance theory. Next, the denoising autoencoder (DAE) is used to enhance the feature representation of molecules. Finally, the CatBoost classifier was used for prediction. KS-CMI achieved the most reliable prediction results in real cases and achieved competitive performance in all datasets in the CMI prediction.

摘要

环状RNA(circRNA)在人类疾病的诊断、治疗和预后中发挥着重要作用。潜在的circRNA- miRNA相互作用(CMI)的发现对后续生物学实验具有指导意义。由于实验支持的数据量少且随机性高,现有模型难以基于实际病例完成CMI预测任务。在本文中,我们提出了KS-CMI,这是一种在实际病例中有效完成CMI预测的新方法。KS-CMI通过构建circRNA-miRNA-癌症(CMCI)网络来丰富分子的“行为关系”,并基于平衡理论提取分子的行为关系属性。接下来,使用去噪自动编码器(DAE)增强分子的特征表示。最后,使用CatBoost分类器进行预测。KS-CMI在实际病例中取得了最可靠的预测结果,并且在CMI预测的所有数据集中都取得了有竞争力的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1d0/10424127/275562ff6a0c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验