Suppr超能文献

BCMCMI:一种结合语义和元路径的融合模型,用于预测 circRNA-miRNA 相互作用。

BCMCMI: A Fusion Model for Predicting circRNA-miRNA Interactions Combining Semantic and Meta-path.

机构信息

School of Information Engineering, Xijing University, Xi'an, Shaanxi 710123, China.

College of Agriculture and Forestry, Longdong University, Qingyang, Gansu 745000, China.

出版信息

J Chem Inf Model. 2023 Aug 28;63(16):5384-5394. doi: 10.1021/acs.jcim.3c00852. Epub 2023 Aug 3.

Abstract

More and more evidence suggests that circRNA plays a vital role in generating and treating diseases by interacting with miRNA. Therefore, accurate prediction of potential circRNA-miRNA interaction (CMI) has become urgent. However, traditional wet experiments are time-consuming and costly, and the results will be affected by objective factors. In this paper, we propose a computational model BCMCMI, which combines three features to predict CMI. Specifically, BCMCMI utilizes the bidirectional encoding capability of the BERT algorithm to extract sequence features from the semantic information of circRNA and miRNA. Then, a heterogeneous network is constructed based on cosine similarity and known CMI information. The Metapath2vec is employed to conduct random walks following meta-paths in the network to capture topological features, including similarity features. Finally, potential CMIs are predicted using the XGBoost classifier. BCMCMI achieves superior results compared to other state-of-the-art models on two benchmark datasets for CMI prediction. We also utilize t-SNE to visually observe the distribution of the extracted features on a randomly selected dataset. The remarkable prediction results show that BCMCMI can serve as a valuable complement to the wet experiment process.

摘要

越来越多的证据表明,circRNA 通过与 miRNA 相互作用在疾病的发生和治疗中起着至关重要的作用。因此,准确预测潜在的 circRNA-miRNA 相互作用(CMI)变得尤为迫切。然而,传统的湿实验既耗时又昂贵,并且结果会受到客观因素的影响。在本文中,我们提出了一种计算模型 BCMCMI,它结合了三个特征来预测 CMI。具体来说,BCMCMI 利用 BERT 算法的双向编码能力,从 circRNA 和 miRNA 的语义信息中提取序列特征。然后,基于余弦相似度和已知 CMI 信息构建异构网络。使用 Metapath2vec 在网络中沿着元路径进行随机游走,以捕获拓扑特征,包括相似性特征。最后,使用 XGBoost 分类器预测潜在的 CMI。在用于 CMI 预测的两个基准数据集上,BCMCMI 与其他最先进的模型相比取得了优异的结果。我们还利用 t-SNE 在随机选择的数据集上直观地观察提取特征的分布。显著的预测结果表明,BCMCMI 可以作为湿实验过程的有价值的补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验