Department of Quantitative Methods and Statistics, Comillas Pontifical University, established by the Holy See, Vatican City State.
Brain Res Bull. 2024 Oct 1;216:111048. doi: 10.1016/j.brainresbull.2024.111048. Epub 2024 Aug 10.
Imagine if our brains could unconsciously predict future events. This study explores this concept, presenting evidence for an inherent 'foreseeing' ability, termed anomalous cognition (AC). We introduce a new experimentally verifiable approach to explain anomalous information anticipation (AIA), a type of AC, based on an innovative, quantum-like model of implicit learning, grounded in Nonlocal Plasticity Theory (NPT).
Our research involved 203 participants using methods such as continuous flash suppression, random dot motion, and advanced 3D EEG neuroimaging, along with IBM quantum random event generators for precise measurements across 144 trials. These trials tested contingencies between undetectable sensory stimuli and dot movements, focusing on participants' prediction abilities. The design conditions were strictly experimental, violating fundamental classical learning principles, particularly reflex conditioning. If these principles were immutable, their violation would prevent any systematic behavioral changes, resulting in random responses. This violation was implemented through two quantum physics concepts: the mathematical principle of nonlocality and entanglement.
Despite the sensory stimulus being inaccessible, our results showed a significant prediction between the contingencies and an increase in AIA accuracy, with explained variances between 25 % and 48 %. EEG findings supported this, showing a positive link between brain activity in specific regions and AIA success. Electrochemical activations were detected in the posterior occipital cortex, the intraparietal sulcus, and the medial temporal gyri. AIA hits exceeded the threshold value corresponding to one standard deviation above the expected mean, showing moderate effect sizes in the experimental group (Cohen's d = 0.461). Analyzing the learning curve using the derivation technique, we identified the acceleration point of the wave function, indicating systematic implicit learning. This result showed that from repetition 63 onwards, AIA hits increased significantly.
The results suggest that, despite violating fundamental classical learning principles, cognitive processes produced changes in participants' responses susceptible to neuromodulation, considering quantum physics principles of nonlocality and entanglement (both present in NPT). We discuss (a) why the priming effect does not explain the significant results; (b) the potential discovery of a new form of quantum-like implicit learning, which could scientifically resolve phenomena associated with anomalous cognitions (e.g., AIA); and (c) future research directions, including potential applications and clinical impact.
想象一下,如果我们的大脑能够无意识地预测未来事件。本研究探讨了这一概念,提出了一种内在的“预见”能力的证据,称为异常认知(AC)。我们引入了一种新的实验验证方法来解释异常信息预测(AIA),这是一种 AC,它基于一种创新的、基于量子的内隐学习模型,基于非局部可塑性理论(NPT)。
我们的研究涉及 203 名参与者,使用了连续闪光抑制、随机点运动和先进的 3D EEG 神经影像学等方法,以及 IBM 量子随机事件发生器,在 144 次试验中进行精确测量。这些试验测试了不可察觉的感觉刺激和点运动之间的偶然性,重点是参与者的预测能力。设计条件是严格的实验条件,违反了基本的经典学习原则,特别是反射条件。如果这些原则是不可改变的,那么违反这些原则就会阻止任何系统的行为变化,导致随机反应。这种违反是通过两个量子物理概念来实现的:非局域性和纠缠的数学原理。
尽管感觉刺激无法获得,但我们的结果显示了在偶然性之间存在显著的预测,并且 AIA 准确性有所提高,解释方差在 25%到 48%之间。脑电图结果支持这一点,显示特定区域的脑活动与 AIA 成功之间存在正相关。在后枕叶皮层、顶内沟和内侧颞叶中检测到电化学激活。AIA 命中超过了对应于预期均值一个标准差以上的阈值值,显示实验组的中等效应大小(Cohen's d = 0.461)。使用导数技术分析学习曲线,我们确定了波函数的加速点,表明存在系统的内隐学习。结果表明,从第 63 次重复开始,AIA 命中显著增加。
结果表明,尽管违反了基本的经典学习原则,但认知过程导致了参与者反应的变化,这些变化容易受到神经调节的影响,同时考虑到非局域性和纠缠的量子物理原理(都存在于 NPT 中)。我们讨论了(a)为什么启动效应不能解释显著的结果;(b)可能发现了一种新的量子类内隐学习形式,这可能从科学上解决与异常认知(例如,AIA)相关的现象;(c)未来的研究方向,包括潜在的应用和临床影响。