Escolà-Gascón Álex, Benito-León Julián
Department of Quantitative Methods and Statistics, Comillas Pontifical University, established by the Holy See, Vatican City State.
Department of Neurology, 12 de Octubre University Hospital, Madrid, Spain.
Comput Struct Biotechnol J. 2025 Apr 26;30:41-58. doi: 10.1016/j.csbj.2025.04.025. eCollection 2025.
Quantum theories have long sought to explain conscious experience, yet their biggest challenge is not conceptual but methodological. A critical gap remains: the lack of statistical tools capable of empirically testing these theories against objective reality. This study introduces and formalizes the of Fisher-Escolà distribution, the first statistical model to integrate quantum and classical probabilities, enabling robust inferential analysis in neuroscience and consciousness studies. We examined 150 density matrices of entangled states in a 10-qubit quantum system using 's quantum supercomputers. Through , we mathematically confirmed that ∼ (, , loc, scale). As a key contribution, a novel analytical solution to the (QFI) integral was derived, improving decoherence stability. Additionally, 10⁵ simulations allowed us to establish critical thresholds for α = 0.05, 0.01, 0.001, and 0.0001, while assessing Type I and II error rates. Type I errors appeared in 2-5 % of right-tailed tests at α = 0.05 but approached zero as α decreased. Type II errors occurred in left-tailed tests (1-4 % at α = 0.05) but also diminished with stricter significance levels. In two-tailed tests, both error types remained below 3 %, highlighting the distribution's robustness. The of Fisher-Escolà distribution pioneers a statistical framework for modeling quantum-classical interactions in consciousness research. It enables hypothesis testing and predicting subjective experiences, with applications in neuroscience and computational automation. Supported by mathematical proofs and empirical validation, this model advances the integration of quantum probability into neuroscience.
长期以来,量子理论一直试图解释意识体验,但其最大的挑战并非概念性的,而是方法论上的。一个关键差距仍然存在:缺乏能够根据客观现实对这些理论进行实证检验的统计工具。本研究引入并形式化了费希尔 - 埃斯科拉分布,这是第一个整合量子概率和经典概率的统计模型,能够在神经科学和意识研究中进行有力的推断分析。我们使用[具体名称]的量子超级计算机检查了一个10量子比特量子系统中150个纠缠态的密度矩阵。通过[具体方法],我们在数学上证实了[具体分布] ∼ (, , loc, scale)。作为一项关键贡献,我们推导出了量子费希尔信息(QFI)积分的一种新颖解析解,提高了退相干稳定性。此外,通过10⁵次模拟,我们为α = 0.05、0.01、0.001和0.0001建立了临界阈值,并评估了I型和II型错误率。在α = 0.05的右尾检验中,I型错误出现在2 - 5%的情况下,但随着α减小接近零。II型错误出现在左尾检验中(α = 0.05时为1 - 4%),但随着显著性水平更严格也会减少。在双尾检验中,两种错误类型都保持在3%以下,突出了该分布的稳健性。费希尔 - 埃斯科拉分布的[具体内容]开创了一个用于在意识研究中对量子 - 经典相互作用进行建模的统计框架。它能够进行假设检验并预测主观体验,在神经科学和计算自动化中有应用。在数学证明和实证验证的支持下,该模型推动了量子概率融入神经科学。